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Preface

The work described in this report was performed under the cognizance of the
Guidance and Control Division of the Jet Propulsion Laboratory.

The purpose of the report is to document and disseminate information of prac-
tical value to the engineer charged with the responsibility for developing an
attitude-control system for a flexible space vehicle. It is essentially a treatise on
the dynamics of fi=xible vehicles as viewed by the control systems engineer, and
deals with control systemn design only to the extent of suggesting ways in which
vehicle flexibility can be accommodated in both preliminary design and final
evaluation of the attitude-control system.

The major portion of the report is concerned with the derivation of equations
of motion foi the computer simulation of a controlled and nonrigid vehicle, and
the development of coordinate transformations that facilitate simulation. Three
basic approaches to this simulation are covered: discrete-coordinate methods
(Section 1I), hybrid-coordinate methods (Section III), and vehicle normal-
coordinate methods (Section 1V).

The discrete-coordinate methods of Section II involve few restrictions or ap-
proximations, and in some cases are as general as Newton’s laws for the simulation S
of the dynamic response of a collection of interconnected rigid bodies. The limi-
tations of these methods stem primarily from the difficulty of creating the required
mathematical model of a real vehicle without exceeding the practical limits im-
posed on computation by considerations of budget, schedule, and computer
capacity.

The hybrid-coordinate methods of Section 111 receive the greatest emphasis
in this report, both because they appear to be most useful and because they
are the least familiar, These methods may be applied only when some portions
of the vehicle (flexible appendages) undergo deformations that may reasonably
be assumed to remain “small,” thereby permitting the transformation to modal
coordinates for vehicle appendages. The key feature of this approach, as opposed
to the discrete-coordinate_method, is the possibility of truncating the matrix of
modal coordinates.

The vehicle normal-coordinate methods of Section IV involve transformations
of all the kinematic coordinates of the simulation, and not merely the appendage
deformution coordinates. These methods are accordingly more limited, and even
when applicable, they may require more complex coordinate transformations than
the hybrid-coordinate methods would involve. In the simplest cases, however, the
vehicle normal-coordinate methods probably afford the most efficient simulation,
since they then permit the most severe coordinate truncation.

In addition to the material in this report for use in the simulation of a controlled
flexible vehicle, there is material of value in preliminary control system design.
Because of the modal coordinates employed in both the hybrid-coordinate methods
and the vehicle normal-coordinate methods, the corresponding equations of motion
permit simulations of varying dimension and complexity, depending on the degree
of truncation. As shown in Scction V, one can truncate so severely as to represent
a very complex structural appendage by a single modal coordinate, and then
manually calculate dynamic transfer functions for use in preliminary control
systen design.
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Abstract

The purpose of this report is twofold: (1) to survey the established analytic
procedures for the simulation of controlled flexible space -vehicles, and (2) to
develop in detail methods that employ a combination of discrete and distributed
(“modal”) coordinates, i.e., the hybrid-ccordinate methods,

Analytic procedures are described in three categories: (1) discrete-coordinate
methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate
methods. Each of these approaches is described and analyzed for its advantages
and disadvantages, and each is found to have an area of applicability,

The hybrid-coordinate method combines the efficiency of the vehicle normal-
coordinate method with the versatility of the discrete-coordinate method, and
appears to have the widest range of practical application,

The results in this report have practical utility in two areas: (1) complex digital
computer simulation of flexible space vehicles of arbitrary configuration subject
to realistic control laws, and (2) preliminary control system design based on
transfer functions for linearized models of dynamics and control laws,
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Dynamics and Control of Flexible Space Vehicles

l. Introduction

A. Motivation

The development of an attitude-control system neces-
sarily involves a dynamic simulation of the vehicle being
controlled, but._the accuracy required of that simulation
may vary greatly from onc application to another. As
long as the attitude-control accuracy requirements are
low, and the vehicle is relatively rigid, the “dynamics
block™ in a control system block diagram is easily gen-
erated. Modern space vehicles are far from rigid, how-
ever, and  attitude-control accuracy requirements are
increasingly stringent, particularly for optical observa-
tions from space vehicles. Further improvements in con-
trol system peiformance depend in many instances on
improved simulation of the vchicle dynamics. The im-
portance of this subject is reflected in the existence of
the NASA Space Vehicle Design Criteria Monograph,
Effects of Structural Flexibility on Spacecraft Control
Systems (Ref. 1). This document includes relevant case
histories and references, as well as design recommenda-
tions.

The incorporation of vehicle flexibility into control sys-
tem design is a requirement neither new nor unique to
space vehicle applications. Designers of control systeras
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for missiles and aircraft have long ago found it nccessary
to consider vehicle flexibility in control system develop-
ment. To some degree, the concepts developed in this
carlier context can be applied intact to space applications
{Refs. 2-10), but in many respects space vehicles are
unique, and new concepts nust be developed to deal
with them.

The environmental history of every artificial satellite
or spacecraft is marked by a brief interval of vigorous
acccleration and vibration during boost, followed by pro-
longed functioning in a quiescent mode of operation
characterized by extremely small loads and accelerations.
Some missions may requirc a second period of violent
acceleration for all or part of the system, but still therc
arc two distinet and radically different dynamic environ-
ments to be covsidered. The universal solution to the
dilemma this poses for the structural designer has been
the adoption of lightweight (and cxtremely flexible) de-
ployable appendages. The resulting vehicle is relatively
compact and rigid during the launch phase of its histery,
but after boost termination it emcrges like a butterfly
from its cocoon, extending antennas and booms and un-
furling solar-cell arrays until the structure has undergonc
complete metamorphosis.




Although modern space vchicles can be found in a wide
variety of configuraticns, certain dynamic features are
sufficiently common to be described as characteristic of
space vehicles, as opposed to missiles, aircraft, o1 . .ud
and sca vehicles, Most current space vehicles cur he de-
scribed as the combination of one or more essentially
rigid bodics with one or more extremely flexible hodies.
This natural separation of the structural subsystems of
the vehicles into two distinet regimes is a consequence
of the widespread use of deployable appendages, which
are much less commonly found on surface or airborne
vehicles.

The structural subsystems of a spacecraft or satellite
are often required to undergo substantial relative motions
during mission performance, while large antennas, solar-
cell arrays, instrument packages, or propulsion devices
change their relative orientation. With the exceptions of
variable-sweep and rotary-wing aircraft, most surface and
air vehicles have dynamically significant moving parts
only as semirigid rotors in the form of wheels, propellers,
and propulsion subsystems. A rigid, symmetric, fixed-axis
rotor is casily incorporated into a dynamic simulation of
a vehicle, but the presence of a fully articulated flexible
antenna on a space vehicle necessitates major changes
in the formulation of its equations of motion, particularly
when the relative motion cf vehicle and antenna is sub-
ject to closed-loop, nonlinear control.

A different class of problem is introduced by the use
of discrete damping devices in spacecraft subsystem
vibration isolation or passive spin-stabilization nutation
attenuation.

All of these characteristic features of space vehicles
present problems in dynainic ximulation, and some of
these problems are quite difficult to resolve by applica-
tion of the methodology of aircraft and missile control
svstem design. There must be a comprehensive examina-
tion of the question of dynamic simulation for attitude
control of space vehicles, and new approaches must he
developed for applications that are bevond the scope of
the efficient utilization of traditional methods of analysis.

B. Scope

The present study is concerned with the development
of mcthods for the dyvnamic simulation of flexible spece-
craft. The emphasis in this report is on analytic simula-
tions. although it is recognized that analytic resnlts must
generally be confirmed or corrected by experimental mea-
surements on models or prototype vehicles.

TR ——— N .

Analytic methods treated here are restricted in their
applicability to vehicles admitting of idealization as com-
binations of rigid bodies, particles, continuous elastic
bodies, and (in special cases) fluids. The cquations of
motion of a continuous mechanical system (with con-
tinuous spatial variation of mass and flexibility) are par-
tial differential equations. It is assumed in this report
that any such equations descriptive of linearly elastic
solid subsystems have been subjected to a “modal co-
ordinate” transforination (as defined later in this section)
and the resulting coordinates have been truncated to
permit representation of system deformation svith a finite
number of modal coordinates. Thus continuous linearly
elastic solids are admissible only in the sense that they
can be represented either as a collection of interconnected
rigid Lodics or by a finite number of modal deformation
coordinates. Fluids are admissible under three conditions
only: (1) the fluid in a given container can he idealized
as rigid, (2) the fluid can be represented by a finite
number of modal coordinates. or (3) all aspects of the
fluid dynamics can be ignored. except possibly the in-
fluence of the fluid on encrgy dissipation. In consequence
of the formal exclusion of continuous mechanical elements,
the equaions of motion are ordinary (and not partial)
differential equaiions,

Three distinet approaches to the analysis of flexible
vehicles are treated in this report: (1) the discrete-
coordinate formulation, (2) the hybrid-coordirate formu-
lation, and (3) the veliicle normal-coordinate furmulation.
These methods are considered in turn in Sections UL T,
and IV, with emphasis on the sccond method. A brief,
qualitative description of each of the three general
approaches is given in the following paragraphs.

The venicle normal-coordinate method is the traditional
approach to the vibration analysis of clastic systems. This
method is weli documented in texts (Refs, 11-13:..and
space applications can be found in technical reports and
journal papers (Refs. 2-10). so in this report it is described
only insofar as this seems necessary for compietencss of

the study and for comparison with less fumiliar methods. o

In bricf, this method consists of formulating couations
of motion. whenever possible. as a system of independent
(uncoupled) scalar second-order dizerential equations.
For limited motions of & restricted class of physical sys-
tems. systematic procedures can be generated for the
determination of the transformation necessary to change
from some arbitrarily sclected coordinate system to the
coordinate system  corresponding to uncoupled  scalar
cqations of motion. In general. the new uneonpled co-
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ordinates (called normal coordinaics) do not correspond
individually to the translations and rotations of discrete
points or rigid bodics of the vehicle; instead, each coordi-
nate is associaied with a motion in which the entire vehicle
participates. Coordinales that correspond to motion of
more than one particle or rigid body of the system are
called distributed or modal coordinates, as opposed to
discrete coordinates, When all the dynamic equations of a
system are uncoupled (as in the vehicle normal-coordinate
method), the modal coordinates are called normal-mode
coordinates for that system. Because the equations of
motion are uncoupled, the vehicle can undergo motion
in which only one of the scalar coordinates of the system
participates. In this mode of motion, all points of the
vehicle oscillate at the same frequency (the normal-mode
frequenceyy and the vehicle undergoes periodic deforma-
tions into the same deformed shape (the normal-modc
shape). Bach modal coordinate defines the amount of the
response in the cortesponding mode, suitably normalized.
The independence of these normal-mode coordinates per-
mits the independent caiculation of their participation
in the vehicle motion. This is the key feature of the normal-
coordinate approach, because it permits the exercise of
engineering judgment in determining which coordinates
are so significant as to warrant rccention, and which may
be abandoned in coordinate truncation.

Even this classical appioach to vibration analysis has
not heen very widely used in spaceeraft control system
design qud evaluation, so aspects of the method peeuliar
to this arca of wpplication are emphasized in this report,
The assumptions underlving the vehicle normal-coordinate
approach and the theoretical and practical limitations on
its use are bronght into foens. Appreciation of the restric-
tions implicit in this approach is particularly imporiant in
space vehicle application. becanse the method breaks
down when the svstom includes nonlincarities, rotors,
disercte danipers, or articulated woving parts. and these
are precisely the features just deseribed as characteristic
of space vehicles, Formulating equations of motion as
first-order (state) equations chininates some of  these
obstactes, hut the practice of working, with normal-moede
coorditates for the entire vehicle is ol quite restricted,

AN of these diffienltios can be aceomnmodisied by avoid-
ing modal coordinates entirely, relving apon a complete
st of equations of a collection of interconnected rigid
bodies considered to be representative of the vehicle,
Becime cach rigid body of the svstem model is discrete,
and the coordinates employed in this approach are coordi-
nates of position and or attitude of the individual bedies,
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this approach is sometimes called the discrete-parameter
or discrete-coordinate method.

The discrete-parameter approach to space vehicle sim-
ulation has received great emphasis since 1965, primarily
because of its gencrality. A growing body of literature
on this subject is becoming available (Refs. 14-22), and
digital computer programs based on these and other
formulations arc becoming commonplace tools of analysis.

The approach most frequently adopted (Refs. 14-21)
involves direct application of the Newton-Euler cqua-
tions of translation and rotation to various subsets of
bodies in the assembly (often to each of the bodies indi-
vidually). Alternatively, Lagrange’s equations are some-
times applied (Ref. 22),

When application is restricted to a vehicle model com-
posed of n rigid bodies intercom.ecicd at n — 1 point
contacts so as to form a “trec” structure topologically,
the Newton-Euler equations allow dramatic simplifica-
tion. These restrictive assumptions are illustrated in
Fig. 1, which shows that adjacent rigid bodies sharc at
least one common point, and no closed loops are formed
by any string of rigid bodies. The 12 bodies and 11 points

4
~ e s =

Fig. 1. Tcpological tree of peint-connacted rigid bodies
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of eontact in the figure are arbitrarily labeled. The simu-
lations deseribed in Refs. 1419 and 21-are limited in
this manner (the “tree” of Ref, 21 s more like a “bush,”
with a trunk and limbs each consisting of a single rigid
body). Under these conditions, for a complete kinematice
description of the system, it is sufficient to know the
location of one of its points (e.g., the mass center) and
the orrentation or attitude of cach of the bodices. It is
therefore possible to reduee the number of equations
required for the dynamic simulation, climinating all
translational coordinates (except those of the system mass
center. which may be deterined. independently in many
€ases),

Suler’s equations of rotational motion of a rigid body
(say, the ith body) are three scalar first-order differential
equations in the variables o!, vl !, which are mcasure
numbers of the inertial angular velocity of that body
for a body-fixed vector basis. These variables, collected
for all n bodics, generally constitute the unknowns of
the final differential equations, which are therefore first-
arder equations, Because a set of angular veloeity mea-
sure numbers does not in itself provide a complete
kinematic description of the system, an additional set of
first-order equations must be included to permit the de-
termination of attitude by angular velocity integration.
These kinematic equations may be expressed in terms of
any desired set of attitude parameters, e.g., direction
cosines or a subset of direction cosines, Euler parameters,
Euler-Rodrigues parameters (Ret. 23), Euler angles (3, 1.
3 rotations). or Tait-Bryvan angles (1, 2, 3 rotations). The
last three alternatives imvolve only three parameters (the
minimum number) for the attitude description of cach
body. but all three-paramcter sets are plagued by iso-
lated singularitics that make numerical computations
impossible for certain attitudes (without coordinate trans-
formation). Most spacceraft-simulation programs employ
a larger set of attitude parameters, accepting the incon-
venicnee of working with a set of coordinates interre-
lated by onc or more constraint relationships, There
appears 10 be no overwhelming preference between a
subset of the dircetion cosines (usually six in number)
and the four Euler parameters (or Cavley-Klein param-
cters or clements-of a quaternion).

It one of the bodies of the set has more than one point
in common with another body (e.g., the two are con-
neeted by a line hinge'. this may be represented in the
simulation by an additional constraint cquation. Proce-
dures exist for the systematic incorporation of such “joint
constraints” into the dynamic equations, with consequent
reduction in dimersion of the matrix differential cqua-

tion of the system, Analysts disagree, however, on the
advisability of this operation for computational efficiency
(Refs. 14, 18, and 20).- -

When Lagrange’s equations are written in terms of a
set of independent generalized coordinates (Ref. 24, arti-
cle 26), constraint equations are absorbed automatically,
and the equations of motion are obtained immediately
as a sct of second-order differential cquations of mini-
mum number. The restriction to the use of independent
generalized coordinates may, however, be a handicap.
since this precludes the adoption of Euler parameters or
direction cosines for attitude description. As a result,
such a conventional Lagrangian formulation must employ
a coordinate system not entirely free of singularities, In
practice, most (perhaps all) programs based on Lagrange’s
cquations usce attitude angles as coordinates (rather than
Suler-Rodrigues parameters), and this selection intro-
duces computationally cumbersome trigonometric func-
tions into the calculations. This may be a greater handicap
than the presence of singularitics, particularly if digital
simulation is anticipated. This approach is also restricted
to systems with holonomic constraints, although this is
perhaps not as severe a restriction in aerospace applicas-
tions as it would be for land vehicle applications that
include rolling wheels.

One may increase the scope and fexibility of the
Lagrangian approach in at least two significant ways.
With the introduction of Lagrange multiplicrs (Ref. 24,
article 87). the restriction to a set of independent gen-
cralized coordinates is relaxed. and one may adopt any
kinematically complete set of coordinates, providing only
that constraint equations in the form of cqualitics (not
incqualities) exist in sufficient number to offset the coordi-
nate redundancy. (Unfortunately, acrospace vehicle sub-
svstem constraints such as damper and gimbal “stops”
are in the excluded class of incqualities.) This approach
extends the scope to certain nonholonomic systems, and
it permits the use of redundant attitude parameters {c.g.,
Euler parameters). The price paid is the added dimen-
sionr of the problem. This method does not secem promis-
ing in comparison with the Newton-Euler method, and
appears nol to have been pursued for general space
vehicle simulation. However, applications to restricted
problems can be found in the acrospace journal literature

(Ret. 25).

The second relevant modification of the Lagrangian
fornmlation is more fundamental. It is possible to avoid
the reliance in Lagrange's equations upon generalized
courdinates. which must be sufficient to establish fully in
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themselves the configuration of the system at any given
time. One may alternatively write Lagrange’s equations
in terms of quasi-ccordinates (Ref, 21 article 30), which
are gnantities whose differentials may be written as lincar
combinations of differentials of generalized coordinates
and time. Since the angular velocity: measure numbers
e a0l given ith body gqualify as derivatives of
quasi-coordinates, this Lagrangian approach can praduce
results with some of the qualities of the Newton-Fnler
formulation.

A recent adaptation by Kane and Wang (Refs. 26, 27)
of the quasi-coordinate formulation seems well suited to
complex spucecraft simutation. The method is applicable
to certain nonholonomic systems and to svstems with
redindant (and constrained) coordinates; vet it auto-
matically climinates nonworking constraint forces and
torques. Although the approach by Kane and Wang
appears to combine certain advantages of the Newton-
Euler method and the Lagrangian method, this path to
complex system simulation has not vet been taken to the
point of a multipurpose computer program for machine
computation of the response of arbitrary discrete param-
cter systems.,

Scetion 11 contains an introduction to the formulation
of the equations of motion for discrete-parameter systems.
The test deseribes without derivation the results of Refs.
14 and- 15, and notes soie of the features of Refs. 16-20.
The method of Kane and Wang is also briefly deseribed.
In view of the functional and. structural beauty of the
cquations developed in these references, it scems unlikely
that improvement can be realized by additional indepen-
dent derivations, and the analyst confronting the problem
of simulating  complex  diserete-parameter  systems s
advised to acquaint himself first with the referenced
literature.

Discrete-parameter simulations are not without serious
disadvantages. Satisfactory simulation of real vehicles
may require 0 great many rigid bodies in the model. The
resulting differential equations are then of high dimen-
sion, and their digital solution may be plagued by high-
frequencey responses that are of no interest to the engineer.
There is no mechanism for truncating the matrix of
coordinates retained in the determination of vehicle re-
spouse, so as to climinate these high-frequeney respuonses
and reduce the dimension of the problem,

When the system configuration demands the generality
of a discrete-parameter simulation. this alternative must
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be adopted. But when all or part of the veliicle allows
the assumption of small, lincarly elastic deformation, the
most efficient simulation is that which combines diserete
coordinates with distributed (modal) coordinates, retain-
ing the generality of disercte coordinates where neces-

(truncated) modal coordinates where possible. The result
is w hybrid-coordinate svstem that permits  accnrate
sinmlation of complex modern space vehicles with a
mininium pumber of coordinates, and with irrelevant
high-frequencey oscillations removed from the integration
output by modal-coordinate truncation. Although  this
method s a natural combination of the other two ap-
proaches. it has received very little erphasis in the tech-
nical literature to date (Refs. 25, 291, For this reason, and
because this method seems to combite the compntational
advantages of modal analysis with the needed gener-
ality of the discrete-coordinate approach. the hybrid-
coordinate method receives major emphasis in this report.

The question of control system simulation per se s
included in this report only insofar as this issue is coupled
to the primary question of flexible vehicle simulation.

Il. Discrete-Coordinate Methods

A. Augmented-Body Methods

Hooker and Margulies (Ref. 14) and Roberson and
Wittenberg (Refs. 15, 16) have observed that when a
system of e point-connected rigid bodies is assembled in
a topological tree (as in Fig. 1, certain inertia-like tevms
naturally appear in comhination in the individual equa-
tions of motion of cach of the rigid bodies in the sct.
These combinations admit of physical interpretation as
the inertia dyadics (or tensors or matrices) of abstractions
called the augmented bodies. Briefly, the ith wagmented
body consists of the ith body of the set together with
certain particles (point massest attached to cach of the
joints of that body. The poiut mass attached to a given
joint of the ith body cquals the total mass of all of the
comected bodies located “outboard™ of the joint. For
example. the augmented body 9 of the 12-body system
shown in Fig. 1 is illustrated in Fig, 2. The mass center
of the augmented body s called the connection bary-
center (or simply the barveenter). The inertia dyadic of
the augmented body with respeet to the corresponding
barveenter is the term that appears in the equations,

A variety of approaches might be considered in formu-
lating the Newton-Euler equations of motion of a system
af rigid bodics such as illustrated in Fig, 1. Perhaps the
most direct approach is to isolate cach of the bodics in




Fig. 2. Augmented body 9 and its barycenter 8,

turn and write the translational and rotational vector
equations for that body, recognizing that neighboring
bodies contribute to the applied force and torque. This
procedure leads to the appearance of augmented-body
inertia dyadics, so it is the method used here. It should
be recognized, however, that this is not the only possible
approach; one might, for example, exclude the equations
of motion of the nth body and instead write the transla-
tional and rotational equations of motion of the total sys-
tem, or of any connected group of bodies within the
system. Other possibilities are explored in Section 11-B.

For an individual body, say, the ith body, the transla-
tional and rotational vecter equations of motion may be
written as

F' = m;a’ 1 )
T f @

'i:|.'.d).'+wix|i.wi

i

where F' is the resultant force and T' the resultant torque
applied to the ith body, m; is the body mass, a’ the mass
center inertial acceleration, H' the body angular momen-
tum, I' the inertia dyadic, and @' the inertial angular
velocity. The quantities T', H', and I' are all referred
to the body mass center. In the notation used in this
report, dot () over a vector indicates time differentia-
tion in an dnertial rcference frame.

Among the constituents of the applied force Fi there
are “hinge forces,” i.c., forces applied to the ith body
by contiguous bodices at the points of contact. These
hinge forces generally contribute also to the torque T
about the ith body mass center, and typically this is the
only coupling mechanism between the translational and
rotational equations (1).

It is cvident by inspection of Fig. 1 that knowledge of
the attitude of every body of a point-connected set is
sufficient for the complete determination of the system

configuration and attitude; it is not necessary to know
mass-center position coordinates as well, since these must
follow from the kinematic constraints imposed by the
joints. Conscquently it must be pocsible to combine the
vector equations (1) for all # bodies in such a way as to
obtain n vector equations of rotational motion that arc
internally complete, without any coupling terms to addi-
tional translational equations. This is accomplished by
first solving the translational equations (1) for the hinge
forces in terms of mass-center accelerations, and then
obtaining from kinematics the mass-center aceelerations
in terms of geometry and rotational coordinates.

The specific manipulations that accomplish this reduc-
tion.of equations (1) to a dynamically complete set of
half as many equations can be found in Refs. 14-18. In the
work of Hooker and Margulies (Ref. 14), the manipulation
is performed at the level of explicit vector equations for
the individual bodies, while in the work of Roberson

—-and Wittenberg (Refs. 13, 16), this task is deferred to a

stage of the derivation in which the rotational equations
of motion are matrix equations of dimension 3n. In both
developments, there emerge terms (dyadics in Ref. 14
and matrices in Refs. 15, 16) that have the indicated inter-
pretation as inertia dyadics or matrices of augmented

JIIEY

© Wy X (W

D] (2)

»

= the inertia dyadic of the Ath augmented
\md_\', referred to the corresponding bary-

center

w, and @, = the inertial angular velocities of hodies A
and ., respectively

T, = that portion of the resultunt torque ap-
plied to body A obtained by excluding
forces and torques applied at joints

Ty, = the “"hinge torque” applied at joint j of
body A

Jx = the sct of numeric labels for the joints on
body A (¢.g., from Figs. 1 and 2, J.. includes
7.8 and 9)

JPL TECHNICAL REPORT 32-1329




D, == the position vector from the barycenter
B, to the mass center of body A (e.g., see
Fig. 2)

F.and F, = the forces applied to bodies A and p, re-
spectively, excluding forees applied at
joints

Dy, == the position vector from the barycen er By
to the joint of body A that leads to body

(even if body e is not directly connected

to body A, but instead is part of a chain of

bodics conneeted to body A)

i = the total systemn mass

S = the sum over values of j in the set Ji.

jedy

The left side of Eq. (2) has exactly the form of the
vector-dyadic representation of Euler's equations, except
for the substitution of the augmented-body inertia-dyadic
about the barycenter (@) for the body inertia-dyadic
about the mass center (I'). The right side of Eq. (2) in-
cludes the body torque T, and the relevant hinge torgues
T# , as would be the case for Euler’s equations, but the
torque contribution of hinge forces takes a surprising
form. In every case, torques are calceulated with respect
to the barveenter, and the appropriate force turns out to
be the sum of the body forces Fy and certain “inertial
forces™ that may be attributed to angular accelerations
and centripetal accelerations.

In view of the complexity of the n-body system under
examination, it is astonishing that the equations of motion
should be so simple in structure and amenable to physical
interpretation. Simplification is even more dramatic when
there is a coincidence-of baryeenter By and a joint, since
then the vector Dy, is zero for all bodies connected to
body A by that joint, and substantial decoupling of the
cquations results,

In general, of course. there are required n vector-dyadic
equations such as Eq. (2) to complete the dynamic de-
seription, and in addition some specification of the hinge
torques TV, is required. In most »pplications, some of
the badies in the model are connected by line hinges,
so that a line is common to two bodies of the sysiem.
The hinge torques T¥, transverse to the hinge axis then
become constraint torques, and cach line hinge provides
two scalar constraint cquations that preclude relative ro-
tations except about the hinge axis. Similarly. a two
gimbal joint provides one constraint cquation, If there
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are v constraint equations and n rigid bodies in the sys-
tem, then there are available 3n + v scalar equations to
be solved for the 3n unknown angular velocity measure
numbers plus the v constraint torques. (An additional
equation is of course re:juired for the determination of
the translation of the syst. m mass center, but this equa-
tion is generally uncoupled with the attitude equations
and is ignored here.)

The most direet approach to the determination of
dynamic response is to combine all the equations of dy-
namics and kinematics with the constraint cquations as
a single-matrix first-order differential equation of dimen-
sion 61 - v and proceed with numerical integration.

The possibility of climinating the v constraint torques,
thus reducing the dimension of the problem to 6n, is
discussed briefly in Ref. 14, and related questions are
explored extensively in Refs. 16, 18, 19, 20, 26, and 27.
Some of the methods that serve this purpose are discussed
in Scctions 11-B and 11-C.

The task of assembling the n vector-dyadic rotational
cquations into a single matrix equation is made quite
awkward by the summations over limited sets of joints
and bodies that appear in Eq. (2). Roberson and
Wittenberg (Refs. 15, 16), in a derivation that developed
in parallel to that of Hooker and Margulies (Ref. 14),
utilize graph theory to construct an elegant formalism
for the systematic assemblage of the individual vector-
dyadic cquations into . the single 3n-dimensional matrix
equation of motion of the total system. The equations of
Ref. 15 are programmed (with some modification) in
Ref. 17, and those of Ref. 14 provide the basis for the
program developed in Ref. 18,

Whether the matrix equation is developed with the
beautiful formalism devised by Roberson und Wittenberg
or assembled in more pedestrian fashion (as computa-
tional cfficiency may suggest), the final structure of the
cquation must be us follows:-

./'[uln = 7y 4 i‘ (3)

where £ absorbs all terms involving constraint torques.
 embraces all external forces and torques as well
as all terms involving inertial angular velocity terms
oo 1,2,2,i=1,-+-,n), and /7 is the coefficient
matrix of all differentiated terms, which are assembled
in the column matriv @, Ignoring for the moment the
question of how constraint equations are to be used to
accommodate unknowns in £, one can readily see that




it is the nature of 7] that will determine computational
difficulty. If %1 were a nonsingular diagonal matrix, a
trivial inversion would permit Eq. (3) to be written as

o =10+ mr (4)
where superseript —1 denotes matrix inverse.

Unfortunately, a glance at Eq. (2) indicates that incer-
tial conpling terms involving @, must exist unless Dy - 0
for all p. The same term Dy, > @, also assures the time-
varving character of 7+, since the cross product depends
on the changing relative attitude of bodies A and ;. This
constitutes a major obstacle to numerical integration,
since if Lq. (4) is used it becomes necessary to invert
the 3n by 3n matrix /71 at cach step of the int gration.
In practice, it may prove more convenient to :etain the
equation in the form of Eq. (3), applying Gaussian elimi-
nation rather than matrix inversion at each integration
step. Even with this expedient, the algebraic process of
finding & is apt to consume most of the computer time
in numerical integration. Since time required for this
process increases roughly with the third power of the
dimension of the matrix ), abundant motivation exists
for working with cquations of minimum dimension.

B. Nested-Body Metheds

In writing n vector equations of rotational motion for
a set of n point-connected rigid bodies, one must make
a choice of the n material subsystems to be isolated for
dynamic analvsis; it is not obviously advantageous to
isolate cach of the rigid bodies individually, as is gen-
crally the practice in Refs. 14-18. (In Refs. 15-18 there
is an explicit departure from this practice when a pair
of rigid bodics consists of a rigid body containing a rigid,
axisymmetric-rotor on a- fixed axis.)

Velman (BRef. 20) and Russell (Ref. 19) elect instead
to write vector equations of motion in turn for n different
subsets of bodies, including a final set of rotational and
translational cquations for the composite vehicle, For
example, if the vehicle were modeled by 12 point-
connected rigid bodies as shown in Fig. 1, both Velman
and Russell might write cquations of motion first for
body 12, then for the subset including bodics 11 and 12,
and then for 10011, 120 Nest, body 8§ might be isolated
and its equations written, and these followed by equa-
tions for the subset including bodies 8-12. One might
then begin anew at the end of another chiain of bodies
(either body 1 or body 7). and progress inward as far
as possible without ever including more than one addi-

tional body in any one step, and without ever considering

it subset with more than one joint connecting. it with the

excluded bodies of the system, For this example, one
might follow the indicated pattern until cach of the three
chains attached to body 4 has been considered, without
ever including body 4 itself. (This choice of body 1 is
arbitrary, since other subsct selections within the pre
scribed pattern can converge as well on any other body
of the system.) Finally, the equations of motion of the
composite vehicle are recorded, to complete the dynamic
simulation.

The idea of isolating in sequence such subsets of rigid
bodies in an n-body system (called nested bodies by
Velman) seems to have both advantages and disadvan-
tages. The concepts of the eugmented body and the
connection barycenter are helpful aids to physical inter-
pretation (if not to numerical computation), and the
terms with which these phrases are identified in the
equations of Roberson-Wittenberg (Refs. 15, 16) and
Hooker-Margulies (Ref. 14) do not appear when the
nested-body approach is taken, In compensation, how-
ever, it would appear that the nested-body derivation
facilitates the elimination of internal constraint forces
and torques.

Velman (Ref. 20) derives his equations in a maunner
that leads quite naturally to the usc of attitude variables
-that establish the orientation of cach body of the system
relative to an adjucent body (exeept of course for rne
reference body with incrtial attitude parameters). Because
geometrical constraints generally restrict relative motions,
it is perhaps casier to identify which attitude variables
are constrained when relative motion coordinates are
employed. Nonctheless, there is no attempt to eliminate
kinematically constrained variables in the derivation of
Velman’s dynamical equations, so his cquations have at
the outset the same basic structure and dimension as those
of Roberson and Wittenberg or- Hooker and Margulies,
namely,

ﬁ? o= 004 (5)

These svmbols differ in interpretation among the several
authors, and, in particular, Velman's o includes some rela-
tive velocities. It should be noted also that Velman's sim-
ulation specifically includes a lincarly oscillating particle,
s0 the method is not restricted to a point-connected set
of rigid bodics. In Eq. (3), then, one of the scalars in the
matrix o is the translational velocity of a particle relative
to its housing body. As in Leis. 1416, the dimension of
matrix o is 3n for an n-body svstem as long as cach body
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is cither a particle or acrigid body forming part of a peint-
connected sets Again, cand L are matrices that depend
upon the kinenitic nnhnewns of the problem, and ¢
is the matrix of unknown constraint torques (and con-
straint forces for the oscillating particle), The most sig-
nificant feature of Velman's work s the procedure he
devises for the elimination from these equations of the
unknown constraint forces and torques.

Velman notes that the effect of the constraints is usu-
allv to confine the solution of Eq. (3) to some lincar
manifold in the 3n-dimensional space of w. I, for exam-
ple. aline hinge conneets two rigid bodies of the system,
and three of the scalars in w are the relative rotation rates
of these bodies about the hinge axis and two unsverse
axes, the (ffeet of the constraints is to confine the solu-
tion to that subspace of the o space (‘xcluding the two
transverse-axis rotation rates, which are constrained by
the hinge to be zero. The subspace to which the solution
is confined is then of dimension 3n - 2, This fact is
unchangcd even when the choice of variables in o does
not specifically include these three relative rates about
and transverse to the hinge; this choice may simplify the
explicit specification of the solution subspace, but it intro-
duces no conceptual change in the argnment. Similarly,
the line of argument remains intact when the solution
in a subspace of w is constrained to be not zero, but a
specified function of time. . for the previous example,
the two bodics connected by a line hinge undergo a pre-
seribed relative rotation about that hinge (as for an ideal-
ized scaming antennal. then the solution is a preseribed
function of time in a three-dimensional subspace of the
@ space.

The preceding remarks amount to the observation that
the constraints determine the projection of the motion
on a particular lincar manifold in the « space. Velman
introduces the perpendicnlar projection operator - (a 3n
by 3 matrix called Fin Ref. 200 and the analvtic expres-
sion

e /r(“ (6)

to represent the specified motion # (£ which is the con-
strained partial solution. Becanse the variables in o are
generally the relative motions, the matrix -+ is typically
a diagonal matrix. null except for ones on the diagonal
corresponding to constrained  coordinates. For a two-
bady svstem consisting of a primary hody with inertial
rates .,

veceand a second body attached on a line
hinge with preseribed refative rotation rates o, = 0.

o O, ot the  matris would have the structure
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6 00 0 09
00 0000
00 0 0 00
" 000100 )
00 00 0
[0 0 0 G 0 1]
and the kinematic constraint equation wounld be
FETT0O0 0 by an eul!
=0 D0 0 0 4] (8)

where superseript 7 denotes the matrix transpose.

Rather than augment the 3n scalar dynamic cquations
in Eq. (3) by the ¢ scalar constraint cquations-that con-
stitute the nontrivial part of Eq. (6), Velman (Ref. 200
uses the latter to climinate the constraint torques &
from the former. To accomplish this. he notes that the
vector of constraint torques (and forces? ' lies in the
same manifold of the o space in which motion is pre-
scribed. Thus if 7 is defined as the supplementary per-

pendicular projection operator for 7, so that 7 - 0 is
the identity matrix E.
AR D (9
then -7 operating on ¢ is given by
TJU0 (10

For the simple example of ihe two hinged bodies, Eq. (10)
appears in expansion as

600 00 0 0

0 1 O 0 0 0 0

01 0 0 0 0 0
= (1

g 0 0 0 0 L 0

000 000 I 0

(0.0 0 0 0 0 [e.] Lo
Now one can return to Eqg. (3) and rewrite it as

i e “ ! (12)
9




e~

which upon premultiplication by -7 and substitution of
Eqgs (6) and (10) becomes

T = T = T p(t) (13)

Velman notes that the matrix 747 is singular, so
Eq. (131 is not vet ready for machine computation. Usiug
the idempoteney of the perpendicular projection oper-
ators and their supplementary character, one may write

Gz 59 = 7 P =0 (14)

and then rewrite Eq. (13) in the form
(FAT+ ) To= T = T0 () (13)
The matrix (77177 4 1) can be inverted to obtain
Ta = (TNT ) T = ()] (16)
which when added to Eq. (6) yields
b= (AT 4 )T = Su ()] < ot (17)

since -7+ = E from Eq. (9). This is the form of the
equation used by Velman. The dimension of the unknown
matrix o is still 3n, but the constraint torques have heen
eliminated.

As noted carhier, the fact that Velman's variables in o
are generally relative maotions simplifies the physical
interpretation of the constraint equation (6), and often
results in constant perpendicular projection operators 0
and 7. Still, the coefficient matrix 2 depends on the
cquation variables and accordingly varies with time, so
the 3re by 3n matrix (5707 # ") must be inverted at
cach integration step for the dynamic equation (17). Since
the system has only 3n = degrees of freedom, one might
hape to reduce the dimension of the variable o in Eq. (17).
and in the process reduce the size of the matrix reguiring
inversion-at cach integration step.

Fleischer (Ref. 18) has developed a procedure for
accomplishing the indicated reduction of the dimension
of the problem to 3n — v If the variable o is partitioned
as w = [, ] with subscripts f and ¢ identifving free
and constrained  coordinates, then one may attempt to
use the constraint equations to find . in terms of o, and
then retain only that portion of Eq. (17) involving &, on
the lett side (i.e.. truncate the matrix & to &), Actually,
Fleischer pursues a somewhat different path from the
hasic equations (3! and (6! to the final equations of mo-

10

tion, and in the process he introduces new operators to
facilitate the reduction of dimension of the final equa-
tions. Because the appropriate modifications are fully
treated in Ref. 18, they are not included here.

Fleischer's final equations have the form
.',/"}, (7), = '(/;I (18)

in which 77, and 73, are time-varying and of dimension
(31 - +) by (3n — +). Computation requires the inversion
of 7); at each integration step (or the cquivalent Gaussian
climination process), and since this inversion is the most
time-consuming. part of a major simulation program, this
reduction of dimension would appear to be a substantial
improvement. Yet there arc additional computer opera-
tions invalved in obtaining and solving the reduced
equations, aid differences in the detailed structure of
the equations may impede computation in the reduced
«ase, so perhaps it would be uscful to discuss the rela-
tive computational advantages of the several forms of
the discrete-parameter system cquations. For example,
buried within the matrices #3; and 7%, in Eq. (18) there
is the inverse of a matrix of dimension +. When o com-
prises relative motion variables (as in Velman's deriva-
tion), the matrix to be inverted is generallv constant,
requiring only one inversion operation. But when o com-
prises inertial rates of the various bodies. this matrix
depends on time, and the matrix inverse must he obtained
with cach integration step. In Fleischer’s work (Ref. 18),
the basic dynamic equations of Hooker and Margulies
(Ref. 14 are combined with a modified version of
Velman's constraint elimination procedure (Ref. 20). so
inertial rates are the variables and the indicated repeated
inversion is required. At cach step of the integration,
Fleischer must invert a v by v matrix and then invert (or
apply Gaussian elimination to) a matrix of dimension
(3n --+) by (3n -- +), whereas Velinan must invert {or
apply Gaussian climination to) one matrix of dimension
3n by 3n. As noted. Hooker and Margulics appear to
favor working dircctly with the dynamic equations as
augmented by the constraint cquations, accepting system
equations of dimension (3n = ) by (3n ¢ +). It scems
probable that sclection of an optimum approach will vary
from one application to the next. but that for very com-
plex systems the advantage would lie with the approach
viclding equations of the lowest dimension.

In the derivations of Refs. 14-15 and 20, the approach
has been first to write dynamic equations in which con-
straint forces and torques appear, and then (in some
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cases) to use constraint equations to climinate from the
dynamic equations the constraint forces and torques and
the redundant kinematic variables. This climination is
not accomplished by the analyst before computation, but
in general is accomplished by the computer. during
nuacrical computation,

Other approaches have been devised that avoid con-
straint forces and torques from the outset, and thereby
preclude the necessity of using computer. time to elimi-
nate constraint forces and torques an-i reduce the num-
ber of scalar equations to the number of degrees of
freedom. In the contr.t of the Newton-Euler formula-
tion, the objective of avoiding constraint torques for a
point-connected n-body svstem in a topological tree has
been pursued successfully by Russell (Ref. 19). Kane and
Wang (Refs. 26, 27) accomplish this objective even more
generally, using a method described in Section 11-C.
Although neither Russell nor Kane and Wang support
the concept of developing a single multipurpose com-
puter program suitable for a wide range of vehicles,
Russell doces provide in Ref. 19 an explicit procedure for
constructing cquations for simulation of an n-body sys-
tem restricted as above.,

Russell adopts the nested-body concept advanced by
Velman and described in Section 11-A, where the 12-body
system of Fig, 1 was discussed as an example, Recall that
for this example one may first write the vector rotationa®
cquations of motion for body 12, then for subsystem 11
plus 12, cte. As pursued by Velman, this path does
involve constraint torques,

Following Russell's approach, the anzlyst must observe
that bady 12 is conneeted to body 11 by a line hinge, and
then write for hody 12 only that component of the rota-
tional cquation T'* - ' paralleling the hinge axis. This
avoids the constraint torques (assuming unspecified rota-
tion about this axis). and it vields one scalar equation
corresponding to the single degree of freedom of hody 12
relative to body 11. Because the torque T is measured
relative to the-mass center of body 12, the interaction
force applied to body 12 by body 11 contributes to T':,
and this unknown constraint force must be eliminated
by use of the translational equation F2 = m,. a'* (Ref. 19).
The method advanced by Russell setains the components
of the inertial angular momenta of the individual bodies
as the unknowns, obtaining angular velocity of the ith
body as necessary from the matrix relationship

iji':-(l')"il' (19:
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(For this reason Russcll calls his method the momentum
approach.) This distinction is central to the computational
question, but not critical to the avoidance of constraint
torqucs.

Having obtaincd a single scalar cquation for.the com-
ponent of H'* along the hinge axis, one next proceeds to
consider the subsystem of bodies 11 and 12, writing trans-
lational and rotational cquations as previously. Now the
analyst must inspect the single joint between this subsys-
tem and the rest of the vehicle, namely, the joint connect-
ing bodices 11 and 10. If this is a 3-degree-of-freedom
joint, the entire vector rotational equation of the sub-
system 11 plus 12 is retained, but if this is a rotationally
constrained joint, only those components of the vector
equation that do not introduce constraint torques are
retained. Whatever the nature of the joint, the number of
scalar equations added corresponds to the number of
degrees of freedom a.ided in considering a new subsystem.
Proceeding in this way, following the pattern of selecting
subsystems previously described, one can systematically
accumulate as many dynamic equations as there are inde-
pendent unknowns without introducing constraint torques
at all. A simple accounting procedure permits the distri-
bution of the angular momentum of any subsystem among
its constituent bodices, and from these individual inertial
angular momenta the inertial angular velocities follow
from Eq. (19). The dynamic equations then combine with
kinematic cquations just as they do for the alternative
Newton-Euler formulations (Refs. 14-18, 20).

C. Generalized-Force Methods

Among the many methods empleyving generalized forces,
most are within the framework of Lagrange’s equation

d (7L iL
— =Y. — § L. a0,
T ('q) Q.. i=1. .y (20

q, h

where g - - - (g, are a complete and independent
set of generalized coordinates, the Lagrangian L is the
difference in kinetic and potential energy. and the gen-.
cralized force Q, is defined in terms of applied forces

F'.-- - /F* and their inertial position vectors r', -+ . ¥ by
> o .
Q. SF.—. i=1 - .n Q2n
=

Lagrange’s equation in the form of Eq. (20} is too familiar
to warrant review and too limited to warrant adoption as
the multipurpose procedure for diserete-parameter sys-
tem simulation. As noted in the Introduction. restriction

"
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to a complete and independent set of generalized coordi-
nates ¢, - * * , 4., is inhibiting in that it precludes the use
of redundant, singularity-free attitude variables and ex-
cludes nonholonomic systems. (A holonomic system can
be fully described by a set of coordinates g, * * -, g, which
are related by v equalitics of the form fi (g, -+, gy, t) =0,
i1, - ,v, thus permitting, at least theoretically, the
determination of v coordinates in terms of the remaining
set of n, -~ N - v coordinates.)

The generalized forces Q; are attractive, however, in
that the definition in Eq. (21) serves to eliminate from Q;
any nonworking constraint forces, and thus to eliminate
these unknown and unwanted quantities from the equa-
tions of motion.

Kane and Wang (Refs. 26, 27) have devised an approach
that retains generalized forees with this desirable prop-
erty, but permits application to certain nonholonomic
systems and to systems with a wider range of acceptable
coordinates.

Consider a dynamic system described by a complete
but redundant set of coordinates g,, - * -, gy subject to
the v+ constraint equations typified by

N
E i‘x,,l),' -+ B_,‘ = 0. i; 1, IR (22)

i

where A, and B, are functions of ¢,, * - -+, gy and t. If
Eq. (22) cannot be integrated to obtain constraint equa-
tions in the form of equalities not involving generalized
velocities, this is typical of a class of nonholonomic
systems.

In application to a system of n particles and rigid
bodics, one may without restriction write the Newton-
Euler equations for the ith body of the system in the form

FoF 0 (23)

T -0 | (24)
where
Fro= -ma’ (25)
and
T - -W (26)
with T . a'. and H' referenced to the mass center for the

rigid bodies. In application to a rigid body, F' is the
resultant applicd force. Because the constraints imposed

12

|

in Eq. (21) imply the presence of constraint forces in F!
and constraint torques in T', these vector equations of
motion when applied dircctly do not have the constraint
elimination feature of the Lagrange Eq. (20). The objec-
tive of Kane and Wang is to modify Egs. (23) and (24) so
as to sccure this advantage without accepting the noted
limitations inherent in Lagrange'’s equation in .the form
of Eq. (20).

To apply the Kane-Wang method, one must first gen-
erate the necessary kinematic quantitics and record the
inertial forces Fi* and inertial torques T' for all bodies
of the system. This process includes the derivation of the
incertial lincar and angular velocities v and @ of all
bodies of the system, and their expression in terms of the
constrained generalized coordinates ¢, * + + ¢y and their
first derivatives, It is always possible to use the v constraint
equations given byEq. (22) to write all velocities vi and
in terms of N -- v (say, the first N — 1) generalized veloci-
ties ¢y, © * * ,qy v, retaining in general all N coordinates
Gi. ' ', gy in these expressions.

The next step is the sclection (by inspection of the
expressions for vi and @) of N — v variables w,, © - - Juy »
so that (1) each u; may bewritten as a linear combination
of the N — v generalized velocitios ¢, * © © .¢v v plus a
residual term free of genceralized velocitices, i,

Ny .
u = 3 Uq; + U,
i

1

R (27)

(where U,; and U; depend on gi, -+, gy and 1), and
(2} cach velocity vi and angular velocity @ may simi-
larly be written as a lincar combination of the variables
Uy, ¢ Uy, L0

vy

L \ f F— aQ

vie 3 oviu, vy (28}
[N

and
AN S
- — \J - ' .

w= 3wy + o, (29)

i

This step clearly involves some judgment on the part of
the analyst, but in specific applications the choice of vari-
ables u; is not difficult. It is always possible to choose
u; = ¢ i=1 -+ ,N--+ but this is rarely the most
attractive choice. More often a judicious choice of angu-
lar velocity measure numbers for wy, © -+ L uy o is useful.
Examples in Refs. 26 and 27 are helpfu) in establishing a
rationale for this selection.
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Fran, th:is point, the application of the metnod is Guite

routine. The vectors vi, @i vio - o vl L@l - L@y
(i1, . are defined by the seleetion of variables
W - iy in Egs. (28) and (29). These vectors are

now used to define the “generalized active forces”

K. S v F o T il N
1

(3M

.
and the "generalized inertia forees”

K,':i(V';.F‘ :QL'T'). ]'_— 1‘._..\7_],
(31)

[}

Kane's theorem (proven in Ref. 26) has the form

K; -+ Ki=0, j=1 - N—y (32)
Kane shows that the basic first-order dynamic equa-
tion (32) does not involve the unknown forces and torques
required to maintain the censtraints of Eq. (22). Thus the
combination of the N - v dynamic equations of Eq. (32).
the v constraint equations of Eq. (22). and the N -- v kine-
matic equations of Eq. (27) constitutes a complete set of
aN -y first-order differential equations. This is the mini-
mum number of cquations consistent with the sclection
of a svstem of N generalized coordinates subject to v con-
straints, In application to the point-connected sets of n
rigid bodies of Section T1-B. N is 3n, so Kane’s equations
are the same in number as those obtained by Russell's
approach (Ref. 19), and the same as those actually inte-
grated in Fleischer’s program (Ref. 18). If the constraint
equations are holonomic (so Eq. 22 is integrable), it is pos-
sible to replace v of the first-order differential equations
by algebraic equations. When these can be solved ex-
plicitly for + coordinates in terms of the N — v remain-
ing coordinates, the results can be substituted into the
dynamic equation (32) and the kinematic equation (27)
to obtain a minimum set of 2(N — ) first-order differ-
ential equations.

D. Summary

The objective here has been to outline the several
approaches to the formulation of equations of motion of
discrete-parameter systems in sufficient detail to develop
some appreciation of the differences in points of view,
and to stimulate interest in deeper inquiry, For a compre-
heusive treatment of the subject. the reader is referred to
the cited works.
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It is impossible to make a definitive judgment of the
relative merits of the many available: approaches. It is
difficult to weigh computer time against analyst time,
particularly in the face of absalute time constraints and
limitations of personnel assigned to a given task at a given
time. Even with a given “cost fimction,” the optimum
approach varies front one dynamic system to the neat.

Within the framework of fully programmed multi-
purpose digital computer programs, which require the
minimum of waalyst time and thought. the work of
Fleischer (Ref. 18) is perhaps most useful. since it com-
bines many of the attractive features of the earlier works
of Hooker and Margulies (Ref. 14), Roberson and Witten-
berg (Refs. 15, 16), and Velman (Ref. 20). It is possible
that Fleischer's program would run faster if relative
motion coordinates were employed, but this would intro-
duce the judgment of the analyst into the simulation
process.

There may be some question concerning the desir-
ability in some organizations of developing a multipur-
pose program. Russell (Ref. 19) and Kane and Wang
(Refs. 26 and 27) offer procedures that seem to lead to
more cfficient simulations than are available with the
more highly formalized methods cited above, but they
require individual programming of cach problem by a
capable analyst. which may be an unacceptable constraint.

lIl. Hybrid-Coordinate Method
A. Vehicle Mathematical Model

The concept of the hybrid-coordinate method depends
upon the possibility of separating a given vehicle into a
number of idealized structural subsystems. cach of which
may be classified either as a flexible appendaze or as a
rigid body or particle. A flexible appendageis by present
definition a lincarly clastic structure (developing elastic
stresses in proportion to strains) for which “small” defor-
mations may be anticipated (so clastic stresses remain
preportional to deformations). In most cases. ‘nternal
encrgy dissipation may be represented by modal damping
(Ref. 30). although discrete dampers can be accommo-
dated. The usual definitions of rigid body and particle
are retained.

In its present stage of development. this method is
formally restricted by the requirement thet cach flexible
appendage be attached only to a rigid body, or to more
than one rigid body if those bodices are themselves inter-
connccted in such a way that their relative motion caniot
induce deformation of the flesible appendage. Thns the
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appendage cannot properly be the only connecting struc-
ture between two rigid bodies, but it can be hinged to two
bodies if their relative motion is restricted so as to permit
the appendage to accommodate their relative motion by
rotating without deforming. Figure 3 illustrates several
examples of idealized mechanical assemblages that might
present real or imagined obstacles in modeling for hybrid-
coordinate analysis. In cach of these sketches the strue-
ture drawn as a truss or gridwork is supposed to be sub-
stantially more flexible than the solid components.

Figure 3a bears some resemblance to a dual-spin vehicle
with a flexible antenna, twe flexible solar-cell arrays, and
two flexible booms on the rotor. Here the de-spun plat-
form B,, the nutation damper mass B_. the rotor B, and
the contents of a spherical tank of fluid B, are idealized as
rigid. Substructures A", - - - A% are idealized as clastic
appendages. An arbitrary control system determines the
relative rotation of B, and B.. with the use of data from
sensors anywhere on the vehicle, In addition, the entire
antenna structure A' may be controlled to rotate on the
base B, without exceeding the capacity of the method.
But if the dish portion of A" is controlled to rotate relative
to its support tower. the model must be modified if the
cquations to follow are to be applied. An individual
appendage is permitted only elastic deformations, so
antenna dish and tower could not together he one append-
age if large relative rotations are preseribed. Yet they
cannot be treated as two separate flexible appendages.
since cach appendage must be attached to a rigid body
{and not to another appendage. The only recourse is to
model the tower as one or more rigid bodies, in which
case the derivations of the following sections continue
to apply.

Similarly. in Fig. 3b onc must treat the two flexible
antenna structures. together with their interconnecting
rigid body, as one flexible appendage cas indicated by
the dashed lines). A given flexible appendage cannot be
attached to two rigid bodies for which relative motion
deforms the appendage. so the massive block between
the two antenna dishes cannot be isolated as a rigid body
and must instead be absorhed as part of the larger
appendage A,

Again in Fig. 3¢ one is strictly precluded from treating
cach of the three blocks in the svstem as a rigid body: the
block shown within the dashed lines must be included as
a part of the appendage. Because of the larg: relative
motions permitted between B, and B one does aot have
the aption of inclnding B, plus B with the Hesible strne-
ture instead of the block indicated. 1 an articalated ele-
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ment such as B, were attached as well to the block shown
within the dashed lines, the hybrid-coordinate method as
developed in this report would be applicable only by
ignoring the masses on one end of the appendage and,
instead, applying sopropriate forces and torques to the
end. This represents some distortion of the method,
and jeopardizes the rationale to be applicd to modal-
coordinate truncation.

Figure 3d illustrates one of the ways in which a flexible
appendage can be attached to two rigid bodies. Con-
straints between bodies B, and B. are such that their
relative motion results only in the rotation (not in the
deformation) of the appendage A. It would not be desir-
able in this case simply to include the little body B. as
part of the flexible appendage because of the discrete
damper connecting B, to B,. The attachment between a
flexible appendage and a rigid body must be consistent
with the assumption of modal damping of the appendage
if modal coordinates are to be obtained for second-order
cquations.

When two different points of a Hlexible structare are
attached by discrete dampers (e, dashpots) to a rather
rigid base (as in Fig. 3¢). one might assume that an addi-
tional rigid body (such as B_ in Fig. 3¢ connects the
support points. If this assumption is unaceeptable. and a
discrete dumping mechanisim must be incorporated within
the appendage. then one can find modal coordinates onhy
after rewriting the equations of motion as first-order eqgua-
tions. Although modal transformations of first-order equa-
tions with arbitrary dumping are treated in Section 1H-1D.
it is tentatively assumed in Section TH-B that any darp-
ing in the appendage may be modeled as classic modal
diwmiping i Ret. 30

It is evident that the equations in this section will not
apply to completels weneral models of space velicles, and
even when applicable they uiy not constitute the opti-
mum approach to simulation. For the system of Fig 3¢,
for example, it may be preferable to ignore cntirely the
mass in the truss structure and to treat the velidde as
three diserete rigidd hodies, perhaps even ina point-
connected topological tree confignration if the truss iy
short and longitudinalis stift. A discrote-parameter sinm-
lation of the vehicle in Fieo 3 wanldl on the other hand.
be hopelesshy incfficient. and the resalts wonld be interior
to a much lese expensive Ivhrid-coordinate simmiation

The traditional practice o normal-mode-conrdinate
transtormation of the second-order cquations of motion of
the entire vehicle condd war Le applicd directls to any of
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Fig. 3. Examples of models for hybrid-coordinate analysis
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the vehicles of Fig. 3, although for restricted maodes of
motion one could obtain vehiele normal coordinates for
the corresponding first-order state equations, This pro-
cedure might, for example, prove optimum for restricted
motions of the meclhanisms shown in Figs. 3d and 3e.

In reading the present section it may be helpful to keep
Fig. 3a in mind, since this is the Lind of system for which
the hybrid-coordinate approach is most ideally suited.

In what follows, attention is focused first upon an indi-
vidual flexible appendage A attached to a single base B.
In the exeeptional case (e.g. Fig. 3d), where a second
rigid body is attached to the appendage. the influence
of this body is felt in changing the attitude of the pri-
mary base and the appendage in its undeformed state,
This attitude is reflected in a direction cosine aatrix €
which is considered time-dependent in the derivatic

After the individual appendage equations are exam-
ined in detail, the equations of motion of the balance
of the vehicle are considered. There is no attempt to
include in this report any general procedure for approach-
ing the derivation of these equations. A class of vehicle
somewhat less general than that illustrated in Fig. 3a is
treated here in detail, although for more complex systems
there may be some advantage in combining some of the
discrete-parameter methods of Section 11 with the ap-
pendage equations derived explicitly here,

B. Flexible-Appendage Equations

Caonsider at the outset the equations of motion of a
lincarly clastic structore A attached to a base B, assum-
ing that the structure undergoes only “small™ defor-
mations while the base motion is arbitrary. ("Small”
deformations means in a strict mathenatical sense arbi-
trarily suwadl or vanishing deformations, since terms above
the first degree in scalar icasures of deformation and
detormation time derivatives are ignored completely, In
engincering practice, however, this requirement is iuter-
preted quite liberally, and a beam that suffers a tip de-
fle ction of 100 of its Jength is commonly deseribed as
having “sonadl”™ deformations.)

For cemvenicnce in derivation and for compadibility
with enginecring practice, the flesible appendage A s
idcalized initiaily as a collection of clastically intercon-
nected. diserete rigid subbodies A, A Damping
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mechanisms are excluded from  this idealization.” but
modal damping is incorporated in the cquations at a
later stage of the derivation, with the introduction of
modal coordinates for the appendage. At this point, the
cquirtions will lose their apparent restriction to discretely
maodeled appendages. and will he cqually applicable to
continnously modeled clastic appendages. In special ap-
plications to taut strings and membranes or to uniform
beams, plates. or shells, the analyst may find a continu-
ous model most convenient. In the vast majority of space
applications, however, a disercte-parameter model s
necessary. Frequently the model consists simply of elas-
tically interconnected particles, but the present assump-
tion of interconnected rigid bodies is more general and
often more convenient,

Let the set of dextral orthogonal unit vectors bbb
be fixed in the buse B. and the similar set a,. a..a. be
fixed in + reference established by A prior to defor-
mation (i.c., fixed in that portion of .\ contiguous to rigid
body B). When A is clastically connected to B, these sets
of vectors may be identical, and at most are related by
a constant transformation matrix. But when A can rotate
relative to B (as in Fig. 3a, the antenna A" might rotate
relative to the base By), the transformation natrix relat-
ing these vector bases will vary with time according to
an independently specified control law, I the nnit vectors
are written as vector arrays

a, 1)12
{a} a.y ) b. (33)
a b S

these arrays may he treated like colimn matrices in re-
cording the relationship between {a} and {b} in items of

the direction cosine matrin = C. ie.,

{a)l - Cib} (34

In application it is often convement to be able o select
the basis {a) for cach appendage individnallv, and 1o
seleet the basis {b) independently (perhaps guided Iy

e principal ases of inertia of the total vehicle, or ba-

Terms to he added to the cqguadions of this sabsection to aceeom-
modate idealized discrete dinpors ar e coeidly cenerated, and
acconmmodated i the coordinate tanstonnations of subhscgnent

subinedtions

I this report matrices are not adentified by brackets [} onle.s
the elements of the natris are recarded o detadts Vector aras

are alwas s encbedb g Braces 00
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design coordinates of a drawing, or by attitude-control
aves), Thus even when A does not rotate relative to B,
the matrix C may not he the identity matrix £, When A
does rotate relative to B so that € varies with time, it
will become necessary cither to augment the equations
in this section by added .dynamic equations or to assume
that perfeet control results in known time behasior of €,

In devising the discrete-parameter model of A, it is
convenient to selecet basis {a} and the individual mass-
center principal axis bases of A, - - - | A, to be identical.

The first step is the formulation of the equations of
motion of a typical body A, in form convenient for com-
bination with corresponding equations for all n bodies.
Consequently the vector-dyadic equations of transkation
and rotation will be written as matrix cquations in
basis {a}.

Let P, be the mass center of body AL, and let O be

a point fixed in inertial space (see Fig. 4). Then Newton's
sccond law provides

F m (P) (33)

where F* s the resultant foree applied to A., m, is the

mass of A, P, is the vector from O’ to P, and (as noted

previously) cach dot over a vector denotes time differ-
entiation in an inertial frame of reference,

As shown in Fig. 4 the inertial position vector P, may
he written as
P. X ¢ R r (36)
where Xois the inertial position vector of the vehicle
mass center CM: e is the vector from CM to the point O
fixed relative to body B and coincident with CM when
the vehicle is in some nominal undeformed configura-
tion: R is the vector from O (o an arbitrary point Q fixed
in B on the interface bhetween A and B: v s the vector
locating from Q) the point Q. occeupicd by Poowhen A
is undeformed; and u* defines the translational deforma-
tion of the appendage at point (L. The vectors in Eq. (36)
are not all expressed conveniently in any one vector basis.

Vector X defines the vehicle trajectory, which may be -

known in terms of an inertial reference. 1t thus becomes
desirable to express Xoin terms of an inertially fixed vee-
tor basis i,.i..f . Vectors R and ro. on the other hand.,
are fised in the reference trames in which bbb and
ayasa are cibedded, respectively, so they are most
efficiently expressed i their own natural vector bases.
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Since a matrix formulation is ultimately required, 3 by 1
matrices are defined for cach of the vectors in Fq. (36)
in terms of the appropriate vector basis. These matrices
are introduce with the use of vector arrays (as in iq. 33),
by the definitions

{b}'e

R (bbb }|R. |-2{b}'R (37)

Aa}rr

r - {a,a.a}]

{a}’

where the superseript T denotes the transpose of a matrix
or vector array,

Upon substituting Eq. (36) into e (351, one confronts
the necessity of differentiating in an inertial reference
frame a number of vectors that are mueh more casily
expressed (and sometimes constants in some other ref-
erence frame. This is most casily accomplished by liberal
use of the identity from vector differential calenlus

477 DU T
ay ar

hals Y (35)

where Vois any vector, 7@/ is the angulur velodity of
any reference frame foorelative to any other reference
frame £, and the superseript preceding the derivative
operator denotes the reference frame of diflercntiation.
Although ¢ may he any independent variahle, in the
present context it is alwavs time.
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Fig. 4. Discrete-parameter appendage
sub-body coordinates

If the presuperseript i denotes the inertial reference
frame, Egs. (353) and (36) may be combined as

R T e T ]
K m. }[‘tfkéﬁ((ﬂ) “?(l’ )

(39)

The first term in brachets in Eqo 39 s (with the use
of g, 37 sdmph

-

it TS (400

iy N

sinee the inertial time derisative ot i) is zero. (Recall
that a matrix devivative sueh as X is just the matris of
differentiated elementss

Thesecond tenm in bracketsm By o390 mav he abitained
owath the use of o, 35 trom

e
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where Iis the reference frame of body B and basis {b},
and w is the inertial angular velocity of b, Differentiating
Eq. (41) provides (with the use of Eq. 38 again)

ol? el .
F(c + Ry - d_l(c ~ R)

Now Eq. (37) may be utilized, noting R to be constant,
to obtain

(e + R = {b}/ ¢+ 2w x{h}¢
fw X [wX {h}(c+ R)]
saX (b)Y (¢c - R) (43)

To express this result in matrix terms, one must obtain
the matrix equivalent of a vector cross product.

For two arbitrary vectors Voand W expressed in terms
of an arbitrary vector basis {e}. the vector eross product
may be written as

VW el el W fel VW
\\"l('l'l‘

rv, W

v Wl
v W
RS \

v Vv ) v\, (i
L V.0

as may be confirmed Iy ovpansions Tnceguivalent terns,
the mateey product VW issomaorphic to the vector produet
Voo W Thes the raton idernitity

Vi Wy A0

tollovw s fronn the vector identinng Vo0 AY W - VoThe

e aperator 0 over w3 by L omatriy represents the

JPL TECHNICAL REPQRT 32-1329




corresponding  skew-symmetric 3 by 3 matrix, as in

Eq. (#0. tiroughout this report. Note the useful identity
R (46)

for any tilded matrix, because.ofskes..symmetry.

LEquation (43) can now he written (with the definition
@  {b}7w) as
I(I;'

T le S R) b} [é4 256 + a5 (c + R) +a(c 4 R

SO

which provides the second term in brackets in Eq. (39).

The final term in Eq. (39) can be obtained in similar
form, although the vectors r and u* are written in basis
{a} m Eq. (37). The.differentiation then is performed in

and the parallel nse in Fag (10 of the relationship

- T

p v e

el e afade oS A o

i( 2 ud: a
— ~*. “T—'—"‘—QQ”\—"
ap (7w = e ar"

+4 Q « [gu > (l“ . “.\)]

h[
4 ﬁr—ﬂ" S rt 4 )
4 2&) NS .I.’.(l ut Q1 (l“" -4 lls):|
dt

o (e +u)] o (i

(48)

where Q4 is the angular velocity of the {a)} frame rela-
tive to the {b) frame, and it has been recognized that
the time derivative of r in reference a is zero. This result
is now to be written in terms of the vector array {a} and
the matrices defined in Eq. (37). 1£-Q7 is written in the
{a} basis as

two stages. First, Q1= {a}T o (49)
d " "d and Eq. (34) is used to write
— s Ty o ee— .)‘2 N Y ¢ ‘l" B R
dt: (r - w) di* a " @ {r w)
+w - |t u)] oY (rd w) {b}7 ={a}"C (50)
is obtained from Eq. (42), and then the derivatives in so that « is written in the {a} basis as
{b} arc replaced by derivatives in {a} by using Fqs. (41)
and (42, and replacing i by b and b by ¢. The result is w- (b} w - {a} Co
then . (48) becomes
Wl e e e e o ,
dr- (¢ w fa) e o 2t (et o) bt )
e, ~ . ~ o~ ~, .~
F2(Ca s 4 2(Ca) Q7 (r  ut) - (Cad(Ca) (0 4 ) 4 (CH (- un] B3hH
When Egs, OO, (190 and (0 are combined in Eq. (39, the three different veetar bases of these equations are aban-

doned in favor of hasis {al, noting that this is also the natural basis for F*. This requires the use of Fq. (50V in Fq. (7).

{iyy (b} e {a} Ce (321"
where s the direction cosine madrin relating the body B to an inertialy fived vector hasis, iy
b i) (53)
The result of theae substitations into . 0305 is the sector equation
o tayrm {(‘H( CCE M e Ry e R 2ot - (e 0
~ . q , f‘. [ ~. '\' '“.‘J
SRt w20 2000 o  (CorCoaiir e (O8N s (5h
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which cmploys the new matrix symbel F* as defined by
{a}' Fr (55)

One may now record the corresponding matrix equation (in vector basis {a}), cither by inspection of Eq. (54), or by
formal dot-multiplication by the veetor array {a}, noting that the relationship

a, 1 0 0
{a}+{a}’ Sa.y{aa.a)e |0 1 0O -k (56)
a 0o 0 1

follows from the introduction of the dot between vector arrays to imply the multiplication of vector arrays follow-
ing the rules of matrix multiplication, but with dot-multiplication of the vector clements inside the arrays. This
notation is sometimes convenient for notational bookkeeping. but even without this artifice one can simply record the
matrix equation isomorphic to the vector equation (54). In the process. the future direction of the derivation may be
anticipated by the replacement of the scalar m, with the matrix m* - m,E. with E the 3 by 3 identity matrix. The
desired matrix equation is then obtained (after some factoring and rearrangement) in the form

o= {C [("):\: 4 ¢ 25¢ ¢ wo{c+ R) — ¢+ R') o] — (T‘ -+ ‘l\l") (,('2" 4 Ca)

A Ny o~ ey -
= [((,m) ((-m) -t .2( /m) ( Y') -+ (2" 00] (l" -+ u* J [Q (Cm ] u* ll"‘} (- ()
Of course the matrix ¢, which denotes the translation S
| . pans e —SCnew e 0
in body B of the vehicle mass center, depends in part on .\.2“(‘ pe e (60)

the translations w (s - 1. -+ - .n) of the sub-hodies of
the appendage A, In general, it may also depend on the
deformations of other clastic appendages of the system,
and on the (possibly large) relative maotions of other
ardenlated rigid bodies of the vehicle, To emphasize the

Thus the role of the appendage deformation in Eq. (37)
is made more explicit by the substitution of Eq. (60) and
its derivatives (permitting C to vary with time). which
results in

influence on ¢ of the deformation of the appendage for &= —-\‘(C g Gy 4 ¢ (81)
which equations of motion are being written, the mass- I
center definition is emploved to_write for ¢ and
" i hd X3 as
| ¢ N(C e + 20T A Clpret) 4 e (62)
ST Y mu e (58) -
“

If it seems preferable to avoid the time derivatives of the
direction cosine matrix C, this can be accomplished by

where ¢ accommodates the mass-center motion due to . ) ) . .
using the identity (38) once more to obtain

other appendages and moving parts, if any oxist, and 97 -

is the total vehicle mass, With the definition hl
(byié = [(h)e] -
¢ {b)e (59
A fay € e byl
F. (3% nnay be written in the form dt s IP v
"(1 n
] ,‘ e AN VTR
{b}ie T NotaY mur i {b)e rff[ fa) = vl
il
“)}I{ ‘:‘ (;"u'l:‘ ‘ ['] ! QI-—(_{a}l E 4'"”‘] ! {b}'[(‘,
: . Y 1
u\"‘ PRITE Vi g Q RIYCIS 7
wheee o0 me i and Eq. (34 has been employed. This fa h u fajre ,2‘,’ (b
vector cgquation Bas the matris connterpart (63)
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With Eq. (34), this yiclds the matrix equation

" 2
¢ =D CT et — CTQY St e (64)
LR} « 1

Ditterentiation of Eq. (63) in reference frame b similarly provides the vector equation

n ~ n ~ n . ~ n . ~ n "
(bYré= —{a}) [ 3 pt*+ Q3 ptuwr + Q0 Z pt] a2 et + Q0 2‘ ut] + {b}Te
x 1 N1 1 X 1 &

The matrix counterpart in basis {b} for this vector equation is

~

n " ~ X ~ e~ D . _
d= —C [ S pir+ S prw + 200 3 ptir + QY wut] +e (63)
a1 a1 1

&1

Now Egs. (64) and (65) may be used in Eq. (57), instead
of substituting Eqs. (61) and (62) in this equation, thereby
avoiding derivatives of C. Alternatively, one can avoid the
relative angular rate @ and its time derivatives entirely
by the substitution of the kinematic identity (Ref. 16)

e =CCr (66)
and its consequence
q=CCr+ CCr (67)

With these substitutions in Eq. (57), and with Eqs. (61)
and (62). all relative motion between bases {a} and {b}
is expressed in terms of the direction cosine matrix C
and its derivatives. Although this option may be optimum
in some applications, it would scem preferable in most
practical cases to avoid C and C, and therefore to employ
Eqs. (57). (64), and (65).

Since the sub-bodies 4,, « + + , A, are considered to be
rigid bodics rather than particles, the translational equa-
tion (57) must be augmented by rotational -equations
such as

T = H" (68)

for typical rigid sub-body A.. Here H* is the inertial an-
gular momentumn of A, referred to the mass center P,
and T+ is the corresponding resultant torque. The rules
of vector differentiation (sce Eq. 38) may now be applied
to H, or to its equivalent 1°+ @, where 1 is the mass-
center inertia dyadic of A, and @ the inertial angular
velocity of Al The result is
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'd
T = o (HY)

'd Nepetd o
Tt (ree) =1 at @ ° (IL[-h(.'oq.ﬂ.ﬁ_.-,_",_..~-

id d A
= e — " + —F A X - XY e
dt dt

(69)

where the symbol *d/dt denotes differentiation in the
reference frame of A.. Here use has been made of the
counterpart for dyadic differentiation of the vector dif-
ferentiation relationship of Eq. (38), namely

.ﬂp~.’.ﬂ°¢l;mh\<n—p\‘hwh (70)
dt 7 dt ‘ -

with D any dyadic and f, and f. any two frames of ref-
erence. (This relationship can be confirmed by writing
the dyadic in the form* D = Dage.eg and then applying
Eq. (38) to the unit vectors e, and e;.)

The term I ¥ w**w* in Eq. (69) is zero, since the
implicd operations include det-multiplying by «" a vector
orthogonal to w*. Equation (69) is further simplified by
the constancy of the inertia dyadic of the rigid body A,
in the reference frame of that body, ic., (*d d)V is
zero. In. rewriting the correspondingly simplified rota-
tional equation, onc may cxpand the inertial angular
velocity @ of A, by use of the “chuin rule”

Neyfs = Neals 4 faggfr 4 -+ - 4 Iw!- (71)
“Throughout this report, lower-case Greek indices range in value
from 1 to 3. and when these indices are repeated ina given term,
summation over these values is implicd.
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where fio - f, are n arbitrary frames of reference and where g is the 3 by 1 matrix defned by B = {a}7 g
Fw! s the angnlar velocity of frame £, relative to frame This substitution puts Eq..(69) in the form

f. In this case the chain is from the frame of body A, to

the frume of A, to the frame of B, to inertial space, Since - o

the rotation of A, relative to A is due only to “small” Te = 1= (@ + Q0 4 {a}? B

structural deformations, this rotation can be represented At
by the vector p* == B‘{?. + pia; + Bra., where B1.B5.B° L@ QT ()T s (@t Q1 4 (a) i
are three angles of rotation about orthogonal axes a,. a., a..

This representation is strictly applicable only if these (73
rotations are infinitesimal, but this is nonetheless the com-
monplace assumption of structural dynamicists. Conse-

Again the differentiation is accomplished with the help
quently @ in Eq. (69) can be replaced by the use of £ I L

Eq. (71) it of Eq. (38), and simplification is afforded by the assumed
q- (71) to write smallness of B (since only first-degree terms in g* and
W - QU a7 (72) B aie retained). The result may be written as

id o e .
T = I“[iw + éﬂ" H(@ 4 Q) X Q'+ {a}" B + (@ + Q1) X {a}’,l?"‘]

(@4 Q) X I (@499 + (@0 + Q) X Fe{a)' g+ {a)Tf X I o - Q1 (74)

If all vectors are now written in terms of the vector arrays of the most convenient basis, with the use of the defini-
tions following Eq. (49) together with
R {a}r Tx

and, with the snmmation convention,

I.:| I:: I:x a
Fe=saag== {aa.a.}| Ij, I, I, a,p ={a}"I"{a) (73)

the vector rotational equation becomes

{(a} 7T ={a}"I" {a} * [{b}" 4 + {a})T0* + (b}Tw X {R)}7TQ" + {a)" "+ ({b)Tw + {a)T0") > {a}7 "]

+ ({b}7o + {a}T0%) X {a)TI" {a} * ({b)"w + {a)T )

(b} o+ {a)T Q) X (@) I a) (a)7 B+ (a)! BN ()T {a) o ({b) w + (a)T)  (76)
By using Eq. (50) to obtain every vector in basis {a), and applving the matrix representations of vector cross-
multiplication (sce Eq. 44) and vector array dot-multiplication (Eq. 36). onc can obtain this vector equation in the
uscful form
(@) T* = (@) {I* [Cir + 10 + (Ca) ¢ + §* + (Co) pr + & ]

RO [Co +a1] 4 [(Co) + VI A+ B [Co + Q1) {T7)

Now the isomorphic matrix equation can be written by inspection (or obtained formally by dot-multiplying by {a}).
In the process. the identity of Eq. (45) is applied whenever it seems convenient to have the most obviously unknown

variable available for factoring on the extreme right. For example, in the last term the unknown deformation ' must
appear on the right if it is to be factored out with the term preceding it, so the identity

1 (Cu+ 1) = — (1 (Cu + )] B
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is used. Here the tilde outside the square brackets is to be construed to apply to the entire 3 by 1 column matrix within
those brackets. With this substitution, the matrix equation corresponding to Eq. (77) becomes*

. . ~s ~ ~ ~ ~1 A
T I [Co+ 04 g] 4 [IMCo) + (Co) I+ T8+ Gt~ (I Co, + Tty ] 3

S I Co + [(Co) + T I [(Cw) + Q1] (79)
Again it should be noted that these rotational equations can, with the use of Eqs. (66) and (67), be written in a form
not involving 97, should this be desirable in a special case.

In most applications, it is convenient to accept Lgs. (79) and (57) as the rotational and translational cquations of
motion. respectively, of body A., with Egs. (60), '¢), and (63) substituted into Eq. (57) to accommodate vehicle mass-
center motion relative to body B. The result of this substitution is recorded as follows, with the temporary convention

that X.means the sum over k ranging from 1 to n:

Fs - me {C(-)jé ~(CR+TC+C&)a—FQ+ b~ Xhi

¥+ Cé + 2[00 + (Co)] 4" — 2C5CT S, ik + 2C5 8

~ o T ~Y i~ U R S~ - -k
— 2N — CoCTSph ub + [0 4 (Cod)] ut — QX ptwt — 2C5CT QU Syt ik — Q0 Q7 Sk i

+ Ca3(R+e)— CaaCT st ut + [(Co) (Co) = 2 (Co) (@) + T3] (1 + u))

~o
Again the identity (Cw) == C&C” might be substituted, and also the consequence (a:) (E:;) =C35C".

Equations (79) and (80) constitute the most general
formulation of equations of motion of an appendage sub-
body A, to be derived in this report. These equations are
applicable to a sub-body of an appendage that is under-
going small deformations while rotating in an arbitrary
way (as described by C and 9") relative to a base B sub-
jeet to any translation and rotation (as described by X
for the vehicle CM and © and o for body B). Any number
of additional appendages or articulated moving parts may
also be attached to B: these internal motions will influence
¥, o, and e,

In practice, the generality of these cquations is rarely
required. Only in the exceptional case (e.g., the scanning
anteana) is there a nonzero €7, so € is usually constant.
Then there is no theoretical objection to replacing C by
the identity matrix E, particularly if there is but one
appendage attached to body B. For reasons not yet ap-
parent, it may be computationally desirable to adopt the
view that all bodies B have only one appendage, even
though the appendage may in some cases be composed
of several physically distinet structures attached to B.
Then ¢ is zero, except when a statically unbalanced rotat-
tag rigid body is also attached to B, or a secondary rigid
body can translate relative to B.

For the simplest configuration, with C = E and ¢ =0,
the equations of motion (79) and (80) adopt the form

To= 1o+ 1]+ e+l — ()] g +al's
(81)
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(80)
Fr= m [0X + ii* — Spb ik 4+ 25 (0 — S )
— (R+7) o +a(u — xpbut)
+ @5 (R+ r* + u* — S ub)] (82)

These equations still permit unrestricted motion of base B.

The forces F* and torques T+ that appear in the basic
differential equations (79) and (80) of sub-body A, include
terms due to structural interactions with neighboring sub-
bodics of the appendage A. These interactions are repre-
sented here as linearly clastic and viscous forces and
torques, so they are proportional to the deformations
and deformation rates as represented by wu’, - - - u”,
B - -+, B"and their first derivatives. In practice, viscous
damping terms are often unspecified until transtormation
to modal coordinates has been accomplished.

The resulting approximation is far from perfect in its
representation of - structural behavior. Even when the
materials of a complex structure are essentially lincarly
clastic, there may be sufficient “play” in the joints of the
assembled structure to jeopardize the assumption of linear
elasticity of the composite structure. Furthermore, the
assumption of viscous damping is not strictly in conform-
ance with the performance of even the simplest structural
clements. But for complex structures lacking disercete arti-
ficial dampers, the assumptions of lincar elasticity and

“The identity (€)= caC? should perhaps be noted, although
this substitution into Eq. (79) seems compntationally inefficient.
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viscous modal damping are alimost universal practice in
structural dynamics, and these assumptions are reason-
ably well supported by vibration test data {Refs. 31, 32),
They are accordingly the assumptions adopted in this
report.

Structural forces and torques in cach of the cquations
typified by Eqgs. (79) and (80) therefore may couple these
cquations to those of every other sub-body of the ap-
pendage. The most convenient method of recording all
the conpled translational and rotational equations of the
n bodies A, - - - | A, is with a single matrix equation of
dimension 6n.

Because interest is focused presently on the appendage
deformations w', - - - ,u", B, - - ,B" only terms in
these variables will be written on the left side of the
appendage matrix equation. The single 6n by 1 matrix

= [u} ul ul B BY Lo Bu) (83)
fully characterizes the appendage deformations.

Because the equations have been linearized in the ap-
pendage deformations, the matrix equation must have the
structure

MG+Dqg+Gqg-Kqg+ Ag=1 (84)

where by definition I)’ and K’ are symmetric and G’ und
A" are skew-symmetric. Inspection of Egs. (79) and (80)
reveals that M’ is a constant symmetric matrix, but G,
A’ and K’ depend on the variables o, @, and C. The
matrix L’ depends on these variables and in addition on
©, X, e, and the external applied forees that may appear
in I and 1. The matrix 2 accommodates damping in
the structure.

The detailed representation of the 6n by 6n coefficient
matrices M’ G0 A’ and K’ and the 6n by 1 matrix L is
facilitated by the introduction of the Boolean operator
matrices

S [0 E 00 E 0]

\ (85)
S [0 E 0 E--0 E)F
where Eand 0 are 3 by 3 matrices, the former being the
unit matrix and the latter the null matrix. In the present
application the matrices 2. and X will generally have
6n rows, but this restriction is not embodied in the defi-
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nition, since the matrix dimension is always clear from
the contest in which it is used.

The operators X, and X, serve to distribute a given
3-row matrix into alternate 3-row partitions of a larger
matrix. having perhaps 6n rows. For example, the expres-
sion X, CoX is the column matrix

.

[(€CoX) 0 (CaX) 0 - - (CuX) 0]7

-

which, by inspection of Egs. (79) and (80), must appear
as part of L in Eq. (84).

The operators 2% and =7, are. on the other hand,
effectively selective siminming operators, since, for exam-
ple, when multiplicd by a 6n-row matrix they sum respec-
tively the odd- and even-numbered partitioned 3-row
submatrices of the Bn-row matrix into a single 3-row
matrix. As a specific example, 3T, g provides the 3 by 1

column matrix obtained by adding ' -+ @+ -+ 4o

The constant matrix M’ in Eq. (84) is now most easily
written in terms of the new symbol M, defined in terms
of 3 by 3 partitioned matrices as

fm' 0 0 O b
o I 0 o0
0 0 m 0 -
M= (86)
0 0 0 I - 0
[0 0 0 O ---1Iv
Now M’ can be recorded as
M = M(E — s, 30 MO0 (87)

Here E is-an identity matrix of dimension 6n by 6n,
and )7 is. as previously, the total vehicle mass (recall
5o =me 0. The matris M omay be recognized as the
inertia matrix that would be involved in a calculation of
cantilever modes of the appendage. This interpretation
will be explored in detait in Section HI-D on coordinate
transformations.

In expansion. M’ appears in terms of 3 by 3 partitioned
matrices as shown in Fig. 5. Note that M’ is a symmetric
matrix of constants.
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m'—m'm'/Qn 0 —m'm* ) 0 s 0ﬂ
0 I G 0 : 0 |

—mﬂ_ml/Qn 0 m*—mm/n O S 0

0 0 0 I 0

M = .
—m"m' /)N 0 —m"m* ;) 0 Ce 0

0 0 0 0 nr

Fig. 5. Inertia matrix
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|

i

?_ Betore recording the matrin G in espanded form, it is asetal to osaine the coctlicient of i By 79 i son

rostricted to the \ln'ti;l] case for which € Foand ©
r 0
~
s - =t — (I ! 1 I
- —1 -1 .

Thus it is evident that the sum of these three snatrices
is skew-svymmetric, although the first two matrices are not.
With Eq. (9% substituted into Eq. «79: inspection of this
cquation and Eeq. (50 permits the matrix G to be recorded
in terms of 3 by 3 partitioned matrices in the v\pdndrd
form shown in Fig. 6. The substitution €2 C7 = L0 has
also been applied here, Note that all of the g ternis on
the right side of Egs. 79 and (S0 are accommodated
in . leaving only damping terms in the symmetric
matrix D’

Pl

The matrix G~ is skew-svmmetric, since the transpose
of the matrix in Fig. 61 2l s negative, A more compact
and useful representation of this matrix can be obtained
by broadening the definition of the operator tilde = As
ilstrated in Eq. (44 when actilde appears over assmbol

o 0 0

0 0 7

0 (4 0
ooahT -

0 { O

26

detall Ttis evident that neither @ nor C changes the character or structure of this coctlicient. <o the atnination is
0. By enponding the matricos. one finds that

L

hb

signifving @ 3 by U omatrin, the correspending skew-
svmmetric 3 by 3 matrin is implicd. Henccfordh wiwen a
tilde appears cver ainv svinbol representing o column
matrix that can be partitioned inte 3 by 1 omatrices, a
shevv svmmetric matriy i implicds which, as o niatriv of
5 by 3 partitions, i diawonall with the 3 by 3 skew-
svinetnie counterparts of the 3 by T ddoments of the ol
umn matrix ranged along the dicgonal, For example, on
the colunm muatris

12
]

S03

o o 0 o 0]

the tilde spetator signifios

S
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With this added convention, atter inspection of Fig, 6 and Fqs. (79) and (80), the matris G may be written in the

compact form

~o ~

S 2NN, 0N (N, Cad)™ = N [(Cw) o] ST A ONT)

t .\l [(l..;; Q")~ '+ ():”/; (Jm)N]

LI RO RTTY o 10 It O VA ) I WA V ey [V O O- SRR H VY O ) (90)
The matrices A and K appear in compac! form as
A OMA{En 7 (N C™] - 3 [0 4 (CT LM ]
K' Y {(}.; L ‘N(xh‘u Q")N -+ 2 (.\.‘.].;“ C(:))N E);. Q’l)}\'“ (:[_“. (A‘m)N(:,._*., (:m)~ (9} )

~ o~ NS o

Cap [T 1 2(Ca) Q4 4

where K is the stiffness matrix that defines the structural
interaction forces and torques induced by deformation of
the appendage. The stiffness matrix K is symmetric (see
Refs. 11-13), but in general there does exist a skew-
svimmetrie matrix A’ Speeifically, the terms in Eqg. (91)
involving angular accelerations 07 and & are skew-
symmetric. and all other terms are symmetric.

Figure 7 shows the first few terms in the upper left
corner of the matriv A’ + K° K. Tt is important to ree-
ognize that in cheehing this matrix for symmetry one
must, in transposing the partitioned matrix, remember
to transpose the 3 by 3 matrices within the partitions.
Since the transpose of a skew-svnpetric matriv s its
negative, one has, for example,

(ot — e
and

[ — (v @yt

"~

r Mo, [ Co el [ar
\ L C ["'.’\; - (i{ [ ’(\:)l:l ' ;: 2
N oY

EOMAFY, Ly Qo™ (a2

28

Lan R )

(Co) (Coil ST M ) ¢ K

This permits the previously noted identification of the
angular acceleration. terms as the skew-symmetric terms
that compose A",

There remains only the explicit identification of the
clements in the matrix L' of Eq. (84). Compact represen-

—tation_is_accomplished here with the new definition

o0 0 ) (92)

The general interpretation of the tilde operator now
provides

% 0 000 - 0 0]
00 00 - 00
0O 0% 0 0 0
7 (A) (‘) (.) (‘l ‘,) (.) O3
00 0 0 oo
0O 0 00 0 0]

Now the 6n by D natris 12 can he swritten as

Cot] M, (2 Cu)

~ ~ Cod T, G ey - A (41
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o A

whoere the new svimbol A is acolimm matris in whicls to
store any orees or torgques applied to the sub-bodies
AL L other than the structural interaction torees
indrced by deformations. For example, field forees such
as cravity forees on the appendage helong in AL and any
attitude-control jets on the appendage wonld contribute
to A in o manner established by a control Taw.

I expancded forme the matrin L7 appears as a colunmm
of 3 by 1 submatrices in Figo S, in which the torees and
torgques on bady jin 4 are represented respectively by

frand 1

This concludes the derivation of the equations of motion
of e elastic appendage on a base undergoing arbitrary

MOE - Xpoxt Moung - R2M (. e07 N axt Mo

SAM N T N NE M ] M, (N

M i (N M (S w)

Faern in this case the equations remain comples in
appearance. Althongh the specialization has greathy re-
duced the manber of terms in the cquation, no simplifica-
tion of the hasic structore of the equations has resalted,
For the specid configurtion as well as the more general
one, the coguations of motion lav e the stincture of By, (81,
I both cases M7 s comstant and syimmetric; GF §s shew-
syounetrie and dependmg Tinearly on the variable and
gencradly unknown angalar velocity woof the base B
K is the sum o o constant symmietric stifiness matrin K
and variable sviomettic matrin depending on second
degrec tonms mecs A is wovariable Shew sy tric matia
dependie tineary on o and L is camposed of applicd
torces and torgues nondinea fanctions of - linear tenns
e S aned the noknow n mass-center mohon N

Foanay appe o that the varions mateiy operators intro
dneed heve senve to obtuscate radher than clarity results,
and that the appendase cquations are tao hopelesshy Lage
aned comples tor efficsient sinntlation: Both ol these impires
sions would be correct it the derivation were to end at this
point Nany of the matrices appearing here are gt
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motion. The final resaltis Eao oS Howith matvices . M
GOR A and 12 given in compact forn by Fags (830, (ST
B0 L and (94 These equations are complicated by
the gencrality introduced with time-varving €, which
permits application to o flexible appendage of changing
attitude relative to its hase (e, a0 scamming antonna),
Additional complesity stesns from the variable e winely
is present to accommodate movable parts within the v

icke tother than the appendager. Specialization to the
simplest configuration, with C F and ¢ 0, led (o the
hasie B 05T and S22 tor the tvpical subiass A

When these equations are combined as o single iy
cquation such as Fog. 81 one obtains the simpler resnlt

l\’l,u!’v l)':lll

Ro - @oR) ¥y (8™ (™) - o5

sparse, and their e inca digital compnter progian s
rendercd inefhcient by tie nnmbher of maltiplications by
sera Bhe nnbe e of suby bodes AL, CAoreguined fo
ancacceptable simmlation of a tlesible appendase may e
quite Loge (3008 not an unrcasonably lage valie tor e,
aned the amatris Foo oS s cqnivadent to G simuoltancons

conpled sealir differentiad conations

Prctical ntility can Lo demonstiated Jor these egn
tioms onlyatter tiosdormadion o carcfolly selected
coopdinates netmits the exereise o fudigment o ignoring
Al but o simall nambor of Catables s vennakable tiat
in introducing a coordinate transtormation and combinng
the residting cguations with appropiete cquations for the
halince of the sehicle, secmingh comples natris comba
mations witl cineree with simple plivsical intopretations,
and voordivate trancation will pesmit meamngdal preliong.
inary designs of sehicle attitnde-contiol ssstems to he
accomplished withont tecamse 1o the compter “The 5

sults of thie coordmate transtormations. hoswover, will b
deterrcd until Section D so that we ey st considles
the vemaingger of the cprations of motion of the voehicle
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C. Ve hicle Equations

B diately npon shittmge attention trom: the append
ave dotormations to e e hehavion of the totad yehicle,
the anadvst condronts o hasie gquestions, Shonld he sinaphy
wobate the vierd body o which the Al)lu‘ln].nlv is attached
anderive s cqrations of wotion: teeating the torces and
tornes apphed ot by the appoedaee as esteral
O shonld he ustead wiite cquations of moton tar a
v coastem that inchades hoth the neid ‘)nd) i
the esble appondiee v parallel questien was con
sidered e Sectien e whie e ntod hady mnethiods
were contasted waith nestod hody ccthods o the con
tovt of B hd coondmate analvsis the answer to this
quiesiion s complicated by the anticipated tuncation of
mockd coordinatos of the .||)|w||||.|'.‘,1 it the anadvst iso-
Lt the bods taowhiche the appondage i attached, b
st he s that i the tomecation: process he retains
valid represontation of e mterw tions forees: hetween
Base ind e nddaee Becanse o this ditliendte it seems
wencralle devable tonchde the appendage with the
pead hodh e the dvoamic ssstemn and this will be
the o thod vsed e Bncertasn cases liowever, when the
vebndle nndoreoos Lose chonges i conficuration, it na
Lo onont efhicient compnzationally o treat the appendage
mterac tion borces as esteraal forces apphied to the nwid
Bodv Fhen some wntifice s regnined osncleas the “senthetu
e o Bet 25 4o e that cooditate tonne ahion
doc ot s ahdate the mteracnon tonce espression His
o thodb s osplared i Secton et of theonepon

Phe oncdiate te ke the dons ation of et 0l
st ob o tvpcal veblocde that e bade s theable appeend,
o Nasdtempt sl beovieede Tene tonestabbishy wowenenld
St ot cguations apphicable toovatiale b space sohinles
AMtontion s estead testicted tooa ehase of vebiache that
ey b el bed s wcmend bodlh Bowith two Heahile
appendecs v and v o Badaneed ongid v i
teva B b g cmehe rwnad Doady B oattached ot BOowith
Aol Ao ot bansbabion d becedom

P v scle sactched va e 3 dies not e oot the
testinc bions of e volucle cgquations 1o be derned here
e votor Koo B S oot ngod ad svmmcton . sinc
imcdudes an o mtonad body B! tao tesibile appoend
oy Vo v Bt 9 Loty tvpedics the vehidde to
which e olloswmg cgoatias apply dhedthv, T i an
wheabzed o spin satelite designed o ninting span
stalnlization with the vead syt rotor B wlile
contted sostorn hotween hadies Boand Boaintains the
psd plattonme B el pomting o bitade e Hes
bl anrenna v s attachied to Bt e that ponnns
Bvite b controdlod s bvinee meotion A soba ol aray A
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isadso attached to By owith an ansiliary control systen
naintaining  the reguired  sun pointing orientation. A
linewr oscillitor B oacts as a0 natdion damper for the
satedlite, its single degree of translational treedom is in
@ diveetion transverse to the hearing anis hetween By
and B

Athoueh the veliiele ot Figs 908 of substantial interest
initselt and by spediadizmg to omit components o fis
joints one can use s egonations of motion for aovery wide
tange ol space svehicles s derivation is meladed here
principallv forits illustidive vadue, The anabvst st be
evpected to approach the derivation of cquations of mo
tion of each space vehicle configuration individually, it
computational ethcicney s o result, The appendage
cquaticns derived in Section T8 on the other hand,
should he applicd dircetly to any flesible appendige
within the definition oftered. and should ot reqeir
rederivation tor specifie cases.

One may write i application: toapy materiad svstem
the basic Newton-Enler cquations, 1 oacand 1 HL
where ois the vehicle mass, Fois the resultant apphed
forec, and W and Tare, vespeetively  the inertiad acedd
cration, anvubn momentinn, and rosalnt torgne, all
retened to the vehicle mass center

I devivimg the aotational cquation bom
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Fig. 9. Tri-spin satellite (crass-sectional view)
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one simply substitutes the angular momentuam definitien
n / p - pdm o7

where pis the generie position vector from the vehicle
mass center to a typical differential mass element of the
vehicle.

Define a new vector poas the generie position vector
from the point O fixed in bedy B,, and replace p in
g (9D by p ¢ e (recaiiing that ¢ defines the dis-
placement in B, of the vehicle mass center CM from its
nominal location at ), The result is then differentiated
(making use once more of Eq. 38) and the integral re-
written as follows, ciployving a convention whereby dif-
ferentiation in the reference frame of B, is signified by
an overcirele (e, f)\:

3] / (p e (p - Odm

.

[(p fe) (Pt &rdm
' /(p tey~jo o (pie)ldm

¢ /lf) V&Y dm /p Cpdm & - /p(im

: /pc!m W - )

. .
‘ /p w - pdm e [u - /(p ! cl-!m]

(98)
The mass center definition requires
/'v cdm 0 (9N
0
/p(!m ¢ / dn < (100
ancd
’ n o l "‘! i
./(l' Ceidme , (prdm @ (10h
32
- gy - — -

Thus many of the integrals in g, (98) become either zero
or a simple vector. The immediate result is

H /p Spdmote el e (@)

f /p C(w p)ydm

: /p spdmoso e - e /p Cw - pldm
(102)

The last integral in Eqg. (102) may be recognized as the
dot-product of the inertia dyvadic Uof the vehicle for point
O and the inertial angular velocity of the base B,. This
identification can be established in detail as follows:

[p v {w s p)dm /[p-pm propldm

[p'pE ppldne 1w o3
I Bl

where E i the unit dyadic (so Ec @ @), Thus the vehicle
angular momentuny with respeet to ity mass center is

I tew e ¢ /p < pdm (10

1t should he noted that when ¢ is due only to append-
age deformations, assumed arbitrarily small. the product
Jie i of second degree and therefore negligible, For
the vehicle ilustrated in Fig, 9, the mass center of the
appendage A7 is nominally fised in By, so the large rela-
tive motion permitted between these components does
not contribute to ¢ The mass of the translating body B
mithes the contributions of this damper body to ¢ small
in an engineering sense (relatively small, bt not infinic
tesimal), and for certain purposes (e, stability: analysis
of balaueed tri-spin: motion) the dimper translation may
be assumed arbitrarily small, Thus the contribation of B
to Jhe e nny abso be negligible, For the vehicle illus-
trated, ondy the rotation of A" on its hinge might con-
tribute nuaterially to ¢, and even this might he only an
oceasional influence. Vhe term Jré ¢ s preserved in
this derivition tor gencrality, but it shonld he recognized
that it shoubd he retained only in exceptionad applications.

The rottional cqnation (985 reguives the inertial dit
ferentiation of the angulr momentum (K. 1046 viclding
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ot

twith dyvadie differentiation as ine e, 70)

- N " W
F o 1o e e ~/p>

W . pdm

. . ° 00
1o - 0w b lrwd ifet 2w

Note that Fuler's equations emerge here for the special
case of a rigid vehicle, sinee then only the first two terms
on the right are nonzero, Another special case of interest
1s that of the nominally stationary base B', for which @
is infinitesimal and Fq. (103) linecarizes to

T 10+ /p ~ Pdm (106)

The challenge of Egs. (103) and (106) is the replace-
ment of the integrals by more convenient functions. Rela-
tive derivatives p and § will exist only for mass elements
that move relative to rigid body By, so the separate con-
tributions of the rotor B, the damper By, and the flexible
appendages A and A- can he caleulated in turn.

For the rotor, the relevant integral is simply
W o o W :
2 . L Q- l T
‘“./H p - pdm i ‘/ml) ( pdm o (3.2 h

(107

where € s the angular veloeity of B orelative to By, 4 is
the inertia dvadic of the rotor, and his the angular mo-
mentm of the rotor B orelative te the base B,

For the translating bods B, the integration is tovial,
since all parts of B have the same velocity poin i, Thus
il is the nass of B oand ity position relative to (s
given in the B fised vector basis b h o h by b iy,

/' p o pdm /‘(R e

S

.‘f‘.{m\(w ey @] e

woop) [ b w) (a8 {n)'/}') ;

Wl

th/ p™ pdm (105)

with b constant and ¢ the single translation variable, the
integral becomes

“t ' ° l : ) !
Tl_. .‘p - pdm m(mb;h;)f' mbéb, + mbiw N b,

(108)

Finally, the contributions of the appendages to this
integral must be songht. Return for this purpose to the
concept of the discrete parameter model of the app:nd-
age, and the definitions of R, v, and w in Eq. (36) and
Fig. 4. In addition, let p* represent a generic position
veetor from the mass center P, of sub-body A, to a typi-
cal differential mass element in AL The appropriate inte-
gral then becomes, for a typical appendage A (here cither
A or A9,

/ p - pdm / (Rir iu i p)ys (B a ! prdm
J

Ja

(109

Yet another application of the vedtor differentiation
tormula in . (38) is required for the interpretation of
L. (109, and this can he done conveniently by writing
the individual deformation vectors in terms of appropriate
vector arrays (as in 15gs, 37 and 72). Recalling that Q7 iy
the angular velocity of {a} relative to {b} for a given
appendage A and {a)’ 2 is the angular velocity of AL~
relative to A one G write Fqg. (109) as

pldm

R- {n}T/ wdm / v {a) erdm R [Q" - , (r u‘ulm]
| g Ot

+ ,r' R (e w ) dme /

u - (2 rvdm { P his {x:}"/}'l - el dm

(110)

t

since in every terme the integral over A can be tepliced by the sum of nintegrads over the individual siub-bodies

AL oA and
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(Remember that u* and {a)” A are infinitesimal.) As for the rotor equation (107), the last term in Eq. (110) can be.
written in terms of the inertia dyadics 1t of the sub-hodies. Fvery other integral in Eq. (110) permits factorization of

{ dm- m,
J

Thus that.cquation hecomes (with ¥ denoting the sum over s ranging from 1 to n)

[p N pdm =R X {a)"Sm, 00 + v {2} m, @
Jo

PRS0 sm, (et un)] b Sm e N [N (1 un)] o Xmout (RN ) b X {a)t B (1

Equation (105) requires the inertial derivative of Eq. (11D, which is

~;§ [p S pdm=e > [R> {a)'sm ]+ RN [{a}Tym ¢ (0 + Q9 {a)"Sm. ]
¢ J

+ (@ 4+ Q> xr {a) o+ S s [{a) m ot 4 (@ F Q) s {a) mon)

(@ X R) ¥ [Q" ~ Sm,(xr + u)] 4+ RN [(Sol" b QY - xm (r 4 u))
P RN [Q N Sm {7 ) 4 RXA{Q N xym, [(w i Q) -~ (rr » w)]}

4xm [(w N Q) N o] e [QUX (4 ut)] b Xmrt [(fl" P Q)N (b))
fame {0 [(w - &Y N (et uY)])

Pam{aY e (0 ) A4 X [(w Q1) v ut] (v )

SmLut s [(ﬁ" P Q) ] A Nm ot s (0 (0w Q1) - r])

xl‘-[{u)"/'}" bl 1 QS {a) ] (w1 8 I‘-{a}'/;“ (@ Q) {a) (n2y

-

This unwieldy expression, repeated for cach appendage attached to hody By, must together with Eqgs. (107) and
(108 he subatituted into the rotational equation of motion (Feq. 105) in the general case of arbitrary hase motion. Fuy-
thermore, the contribution of appendage deformation to 1 in Fq. (105) would have to be caleulated. In most engineer-
ing applications, this degree of complesity is unwarranted. In the foregoing, only appendage deformations have been
restricted and these have been assumed to remain infinitesimal, To fact, they are at best small in an engineering sense
only, and deformation velocitios and aceelerations probablv exceed, in most space vehicles, those due to preseribed
relative motions (such as Q7 and M. 1t is thus most reasenable in an engineering application to lncarize in these
Vatter variables abso, ablthongh it should be understood that the vesulting equations Tack the rigor that can be elaimgd
thowever atificially) for equations such as Bq. (105), lincarized in deformations onlv. With Dnearization in £ and &1,
Ll (112 hecomes

Wl

;"./. popdm @ - (R {a) Smt] VR ey Smae o w s {a) Sm )
Cw o (et Y mn) ose () mant @ o {a) mynt)
bW R) R Sar) PR (R @ ) amre R [R (w )]
CoNmLr [(ﬁ“ Cw o QY ] b amr - [ (w1

; ).l:-{(n)’ﬁ' W {a}’/}'] tw o I“(a)’/'}' Vo m'{n)'['s“ (113

This result, when substituted into Bq. (103), would be appropriate for the sinmlation of the vehicle of Fig, 9 in the
unlikely mode of motion in which the appendages are undergoing gradual change of arientation with respect to By
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while the inertial angular velocity @ of B, is large. More useful forms of this result appear either when * is idea-
tically zero, which leaves

‘Wl ‘ . . " . .
7{,/1, Spdm @ [RN {a)rxmen] - RX [{a} smotc - o {a} Xma]
[4
S
C@N (S {ay mo) S ose N [{a)Y i - @ s {a} mo]

P (@l e X () A e N Fe{a) A - N e fal A (1)
or when @ is also assumed to he smalland. inelndediin the linearization, with the resalt

~;: /p Shdmo R @Y Smone ot Se {a)Y mott f RN (@ Smor) o X (ﬁ" Nt 4 SBe{a)t B
¢ Ja -

(115)

These two special cases may be of value in practical applications, since they accommodate the tri-spin vehicle with
flexible appendages on the de-spun bady, and also the dual-spin vehicle with appendages on the spinning body. Even
further specialization may be warranted, since spinning vehicles with Hlexible appendages are usually simple “spinners.”
rather than dual-spin vehicles, and a de-spun body with flexible appendiages is more apt to be part of a dual-spin vehicle
than of a tri-spin vehicle, in which case the relative motion Q1 is usually zero.

The essential differences among the expanded forms of the rotational equation (103) aee simply differences in the
size of the equations and the amount of bookkeeping involved in writing them in matrix form. Because the purpose
here is simply to illustrate the structure of the vehicle equations, attention is vestricted heneeforth to a dual-spin vehicle
with a rigid, svmmetrie rotor, a nutation damper, and a single flesible appendage without rotational capability relative
toits base (7 0and € Eso {a} (b)) The platform angular velocity @ is mrestricted, so the eguations to follow
may casily be specialized cither to the simple spinner with flexible appendages (by omitting the votor) or to the duol-
spin vehicle with an appendage on a de-spun hody (by lincarizing in @), By taking both of these steps (omitting the
rotor and lincarizing in @), one obtains equations of motion of a space vehicle with three-avis active reaction-jet control
inan inertially stationary nominal orientation,

By inspection of s, (1H03), (107, (108), and (1D, the required veetor-dyadic cquation is obtained as fo'lows:

. o g . . . R
T 1ed @ - 1w o bew i hotmb(Eh, g b))t [Roe (b} N

R (b)Y Smoiis b @ (b smoar] fw [ s (b)Y mwe] b oxe [{bY m u=i w (b} m.)

PAl e bR @ (BY AT @ - XEe(bT A B wefb) (116

Note that the nass-conter motion ¢ has been asswred to Let the generie symbol p™ be the value of p when the

be infinitesimal, in accordance with the indicated special-— vehicle is andeforined, so that the inertia dyadie of the
ization. undeformed vehicle is

Teans involvivg 1 in Eqg. (16 are time-variable, since ! / (b ep®  prpdm (11

the inertia dvadic of the composite vehicle depends on

ity detonmations. By definition (see Eq. 103, the vehicle-- - For all points of the vehicle except those in the fleible

incttia dyadic for point O is given hy appendage and the nutation diamper mass, pis identically
p~. For points in the translating damper body B,

| / (p-p® pprdm (tm P optho bbb, (114)
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and tor the mass center P, of body A, of the appendage,
\ Pl Y

(120)

In addition to the contribution of the translational de-
formation u* to the deformed vehicle inertia dyadic I,
there is a contribution from the rotational deformation
B~ for cach sub-body A, 1f the vector array {a*} consists
of a dextral orthonormal set fixed in A, then the inertia
dyadic & of A, referenced to the mass center P, may be
written in the {a*) basis as

b (@) ) (120)

It now {a'} is aligned with {b} when the appendage is
undeformed, then the deformation {b}? g yvields the unit

’ he o ek e .-'-.y--wmww b 2 ol
>

T

seEme 2R e K

l‘[?‘).u - mbf(li’l:’“ CLEY G w28 Y

CATTONCUT T et Nl (p v

YT by S mbg RS a2 Y w |
sale m"lh;‘(l‘:‘l’:'l ' "."I..”)w
(R
B Y - hooah - mb,:“lf Cmbisl
36

PN R A RA Y 0 O Y X e e P

vector relationship

{a) (k- By (122)
~

B is the lincar approximation of the direction
cosine matrix generated by the orthogonal 1-2-3-type ro-
tations B, 3., 8. Thus in terms of the vector basis {b),
the inertia dyvadic for body A, becomes

sinee £

v by - B (E — §) {bY
by BV - B b

bV I {bY ¢ (b)Y (A )b (123

The second term is theretore the contribution of rotation
8 to the inertia dyadic 1 of the vehicle,

From Lgs. (117) through (120) and (123), it follows that
the vehicle inertia dyadic is

Lo~

I mbi(bb, 4 bb) t xm 2R v wE R ruw - w (R )] DY (E - B {b) (12:H
Noting that the ideutity dyadic is
£ (b} (b} (125)
so that, for example,
RewE  ROgbye(h} w (b} {b) R (b} {b) (b} Rl {b)
one may write the inertin dyadic as
t {b} mb¢ (EME" o ) {b)
ALY N 2R Y e = (R et e (R BY - (bYN(A T Y (b) (126}
The derivative § is readily obtained from Fq. (126) as
i (by L mbé (0 EEY) Cxme 2R oy il (R eyt (R o)) E(E‘I‘ l‘ﬁ')}{l)} .
(120

Finally, the complete and explicit vector-dyadic equation of rotatioial motion can be obtained by substituting Lqs.
(1260 and (127) into Fq. (116). In the process, all vectors and dyadies are written i terms of the vector ariay (b},
and the matris representation_of_cross-products is emploved (see Fi. 40, The result s

Bt w @By s@ e ri
will - rile
(R’ w (@R

AN M

(R oyt
r)! ] I
Roxme i

CwRESme e Rame i

SN IV L

(s

JPL TECHNICAL REPORT 32-1329

T




Svmbols T, I and T are new, being defined here by their context. The identities

BN @b} A - 1w N (b} g = (BT s gge

and

h-h:w<h- {blTh - {(b)rxh

have heen emploved in writing Eq. (128).
The matrix equation isomorphic to the vector equation (128) can be written, by inspection, simply by dropping the

vector arrays (or by pre-dot-multiplving by {b}7). This matrix equation is more useful when written in terms of the
total 62 by 1 deformation matrix ¢ (doﬁm‘d in Eq. 83). making use of the operators X, and X, (see Eq. 85). The result

then ‘ldopt\ the form

T Lo aliws b sh+ 2537 M(3.R

~+ r)‘ (]-.5.- o -
—

S A‘I(] (l‘p.. R

~

—mb (§E + ) (E'EST 4 ESE') o + SRXL, .\1(‘, “

+ 8 MG -

GXTMG F XL TN Mg

l{w .‘f(,':..u,t; o

‘A\i(.\_;»?.‘ [ANTEID YOI )

The derivation of this equation has been the principal
objective in this section, Interpretation may be facilitated
by restricting attention to the special case of a dual-spin
vehicle with an appendage on o nominally de-spun plat-
torm. This case is significant from an applications view-
point, and vet the assamption that o is infinitesimal
renders B (129 quite inte rpretable. Since o s small,
it can be replaced by the matvix 4, where 6 - [4,6,6.]7,
The result is simply the lincar cquation

T e h
b oxE FMI

R o mb{E" + Rxo Mij

XM (13m

Sinwee I” is the inertia matrix of the total vhicle as a rigid
body, the equation I T @ would sutfice if the rotor were
fixed (nonrotating) and the appendage were rigid, The
torgue applied to the body H. in accelerating the relative
angular rate of the rotor is— hand the “gyroscopic stitt-
nes” supplicd by the totor is in - b The term mbE
reflects the “inertial torque” due to damper mass aceeler-
ation, and the Last three terms refleet the offects of ap-
pendage deformation,
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ryt q_h @

LR TS RS (129

The more general Eq. (129 has the major added term
oI o, which introduces the “Luler coupling”™ or “gyro-
scapic coupling” of the vehicle as a spinning rigid body.
In addition, Eq. (129 includes @ multitude of nonlincar
terms that reflect the intluence of the vehicle deform-
ability. They can be categorized as various Kinds of aceel-
cration terms (centripetal, coriolis, ete)), but pethaps they
are best understood by reviewing their origins in the
vector-dyadic equation (1161,

The matrix equation of general rotation of the vehicle,
Fop. (1290, is compatible in its assumptions with Feg. (93),
which defines the appendage response to agiven arbitrary
base motion. These equations do nog vet constitute a com-
plete set, however, sinee they include (in addition to
unspecified c\h‘rlml forces and torques) the unknown
motion variables X0 ¢, and h.

The 3 by i matrix X is the matrix in an inertial vector
basis of the inertial aceelenition vector ot the vehice
mass center. This vector is casily related to the resultant
applicd foree ¥ by applving Newton’s second law, i,

F~onX antiyx
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W is written in tenns of the body -fined vector basis (b,
relatcd to i) s m B33 this eqgqnation becomes

i X RS JEREAN

Newton's second law also provides the equation ot
motion ot the damped linear oscillation representing the

nutation damper, exeept that only the b component ot

the vector equation of translation is required. The vector

result is

MX-¢-bb - gbsboebh Focbh ks
132

where b and dare scalar constants ot the spring and Jdask

Pot. tespoctivds s The mass-center displacomont voctor ¢
iswvaidable ons B0 s

¢ {bl'x. Mg ms . b by iy Mg om0
o that
¢ by s g o mEL 23 g o omel Iy oomElE A g micl i 133
Simifar operations on'bh by E and b (b E penmit the expansion of the term in parentheses i Fago 132 0 and
the b dot-product then provides the sealar equation
myl omovd od c2mETTE mo s ke omE S o bom L B
mE:7{ X b oy E Yoo 27y g SN T {RE!

It sheuld be noted that the ratio m is too smadl to
warrant retention when Bis o natation damper, althongh
tor othor .lpp‘l\.l(inlh of transhating second hodies this

may not he the case,

Finalv, an cquation ot motion mast he providad 1o
detamine the ramamng vanable B the ancular momen-
tum matriy of the ator B orelative to body B evpressed
e the vector hasis ot B0 Because the totor spins abont
its anis of svimetey it pelative angndar momentuns can
alwans be eapressad as the produdt of aosealar 75 and
@umt vedtor fined i Bowhone i the moment ot
et of the totor abont its svometry asds arnd s the
sprn e ot the otor Boaelatine oo the base B
coenttion of the mtor me Bois here selectod <o that the
totor anis patallele b omerely for anadv tical conveme ne
Fls the relitnve ananba momentim oy b ovprossed

a
h al N

Fhos o singde sedar cquation st be domved o the
doternenatien oF the scabar vokoown o This s eadils
obtincd as the sealar Palor cogration cotroponding to
the anis of sy tiy . ey

o 1. 16

38

wWheie = v the magnitude o the torgun .\m‘li(\l to th
rotor along it anis of svoenctey o general - is sone
combuation ot boanmye tocton and the motor Lorgu
cstablished by wccontiol T Complete simulation wondd
Ctocounse oguite an anvhary cgoaten b thae ontral
LI\L .lll\! (\(_('[‘( HE YR AY l)!l‘HKIIII.H\ ' l‘\!l’.lhﬂl]\ !In
contro! Liw swonld he nonlime

\

I sy Fos e 03 150 129 ald s
constitnte o complete st of dvoamse e tor e
svatormn The nnknewrere mcknded oo 0 A and g
Foreatione B35 st be sobitieated o Foo 129 beogor
colloctme these cqations e ondor to clmmate e T
comphote the vomdaten o o o8 bencmatn cquations
rebatme cand st beomclided The particalan e
nons iaed wall depend on the o parmnet s chosen
toodeding the otienration ob Bt spaee s due
o cosines. Palor paremc o it anedes oy
Phew cqoations e anaolabte tooi the fandarme ntad bine
et rebaitondip Ret 16

bt more surtabde tonms o the Kot cgriations ©an
he obtamed b spethe par et hoves v 00
Ret 23
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1t is then conceeptaally possible to colleet the five dy-
mimic equations (1360, (134), (13D, (129), and (93) to-
gother with Kinematic equations from Eq. (137) and
control laws for the rotor torque = and the vehiele torque
Toand with. this set. to accomplish the simulation of
dual-spin vehicle with a flexible appendage and @ nota-
tion damper attached to a hase undergoing arbitrary
motion, By specializing these equations, one could simu-
late w simple spin-stabilized vehicle, or o vehicle with
threc-anis reaction-jet control. By generalizing these equa-
tions. proceeding from vector-dyadic equations developed
here in detail one conld wiih straighttorward labor simi-
larly simulate a vehicle controlled by several rotars
Cmomentum wheels™ and having articulated elastic ap-
pendages capable of substantial relative mction, Al of
this is. however, only conceptually passible, The complete
set of equations is available, but it they are to he applicd
to a real space vehiicle represented by areasonably aceu-
rate mathematical model, the dimension of the resulting
cquations is prohibitively high. even for machine con-
putation. Remember that Feg. (950 alone consists, for
practical problems, of hundreds of second-order sealar
ditfevential eqprations, cand that the entire system of equa-
tious is uoulinear and highly coupled, 1 these cquations
e o e practical value, they must e sulgeeted 1o
coordmate teastorations that aecomplisle sulistiaitial
reoupling of the cguations and permit the aalyst to
[RYRYRLYE ]miunn'nl eresgrichng his attention to o subhsel
of the present et of perhaps Innsdreds of coardinatos, i
order to justits workiog with wnore reasonable nunser
ot ditferential cquadions i thee sisonbation af the vebicle,

D. Coordinat Transfarmations

Lo Uransformation rationade, Thee abjective of thiy sec
tion s tomvestiszade the possihility of siveplifving the
carations of motion by introdueing locar taastornsiions
1ot some of the vanablos The traostonmations aee applicd
o the appendage detonmation matein ¢ onby, leavingg the
discrete camdingtes of the base B the danper B and
the votor B anchanged, The more remate possibility of
findine o trnsferaation it rian tonitfully De applied to
the entine svatenn of conrdinates is treaned in Section IV,

OF conrse o mdinite varieis of conrdingte transtorma
tions iy he clevined cven swathin the linear class do
which attention is presenthy cesticted . Ay trastorma
tion that prossides s ane- to one mapping e one onopd;
e sustem o the nest viclds cquations that congled
theoreticadly proside o correct simuladion, It obiyjanshy
nat Il soch transtormations are advantageons §tnas e,

hoswever that more than ane useful transtosmation will
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be available, and then the appropriate choice may depend
on individual standards of utility,

The basic difficulty in using the equations of motion
derived carlier (Eqs. 95, 129, 131, 134, and 136 or their
cquivident) is simply their dimension. A certain amount
of nonlincarity and coupling of cquations may be un-
avoidable, Therefore the primary test of the utility of a
given coordinate transformation is the degree to which
it permits the truncation of the coordinate matrix, and
the consequent reduction in the dimension of the system
of equations.

Coordinate truncation is never a completely rigorons
process, since it results in an incomplete and imprecise
indication of the response of the mathematical model to
its dymunic environment. As a practical matter, however,
it must be recognized that the mathematical model is but
an imperfect approximation of the vehicle being studicd,
so ity sophistry to argue that coordinate trancation nee-
essavily degrades the simulidion of a real vehicle, Some
degree of truncation may he appropriate even when the
most realistic efficient simubation is songhi

There e uo entivedy sidisfacwny amalyticad procedures
for detenmining the degree toowhich aogiven matrin ot
ceordimates vian sately be truneats d, nor canc the vldne
accrptability of trancation of wdtordine comdinate sys
tems he inequiveeally establishod, Tt shoald be nnsted
however, that when a coordinate trastarmation pro.
vides woeompictely imconpled sy stem of sealar differentiad
corattions, one caneabtain the solation of thse equations
procisey for each scabin conrdimte in turn, withont con
siddermg the inflnenee of odher comdinates, Theretare one
can tancate the coordinate matrin withoul saerificing
the rigorons vadidits of e salutions for the coordinate.
retained, The determination of e namber of sueh com-
dinates to retan for acceptabl simdation is sl a oattes
of engineetingg fuedgment. but the calidite of the solntion
for these retained is relatod divectly to e degner o
swhich the ttanstormed equuations are unconpled. Aecomd
ingly . the desitability of W given coordinate tansforma
tion is masured here o teems of the Jegger to which it
mcouples e systom ot ditferontinl copatines cinployved
in the vehicle simulation,

The totel svstem ot cquations toquired for ihe el
sitindation wehdes some eqadions v nech e appretsed
age deform dion ferms are of contral portan e ooz the
appre nedage equation 9% some cquationson which terms
g are gone sl of secondary amportance tegthe ninta
tiom Jdamper cguation 730 in which g s alwave iy
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plicd by the small constant matrix ), and some equations
in which ¢ does not appear at all (e.g., the rotor equa-
tion 136). In the guest for a travsformation that to somp
degree uncouples the equatio ¥ therefore reasonable
to concentrate on a subset 0oi . ~etem of differential
cquations, excluding fre-—= JFe equations of
motion of rotor and & | v K S equations
relating o and @, and the con., R qons. (Note
that the last of these will ir ¢ when sensors or
thrustors are mounted on flexible appendages.) This deci-
sion to concentrate on certain equations clearly marks a
compromise with the objective of sccuring uncoupled
equations, and, in faet, this objective became unrealizable
with the announced restriction in this section to transfor-
mations of the appendage deformation coordinates ¢ ouly,
The finul cquations must certaindy remain coupled hy the

M (1': N .}.:,l .\;,' “” ‘l b2 ‘/‘.’ !(_L'H m)~ }.‘/4.;:.\..:” M )”] i M (!."- m)h( i (}:..;- m)’u“l
f (A"HL,.,M]N 5,,.,1:.:..:“,\! \“[] Y [(L'Ultl)N(:""‘”)N

M@, MUK MISe R

T

diserete coordinates of B,, B, and B,, and by ignoring
certain equations while transformations are sought, one
aceepts as well the likelihood that these equations will,
after transformation, remain coupled in the new deforma-
tion variables,

Attention is now restricted to Fas. (95), (129), and (131),
which are respectively the appendage equation, the ve-
hicle rotation equation, and the sehicle translation -

tion. The Tast of these is trivial, permitting the solution.

oX  F o (138)

This substitution into Eq. (95) with the substitution
c méL ) to accommodate the damper, provides
the revised appendage cquation

(MY )™ D'y q
Ny sl M o] Ky y
(Bpew) (o) T (Sl ™M (X 0

VS F S ML mdE A (139

This cquation consists of Gu second-order sealar equations sad can e wiitter as a nialos cquation of the stinctnne ot

L (56 e sameswhint mote explivitly as

Vg g g Ky Ny 0 M,

wWhere N pepresents the nonbinear tenms in w e o cen
trituga! forces on the appendage, Hene G deperads in
earhy oo A depends Bineardy on,and K depends non
lincarls on o dvolving oy second degree tenms). Ay
voted i the diacuesion of Vg vt D and R are
ssoimetrie and €7 and A o shew sazetaie

The remaning conation of primany inteiest, Feg (1209,
vonsists ob ondy theee sealar egnations, Jhongh mins of
ity Aerms v alve mtoy operators tat acoenplish sin
miatices over Gucleraents, The appearance of the sarahle
q and s devivatis es e Fg 0090 is aggam linear, and again
woappears oy i the fisat power und i the seennd, s
it wondd be possible to wite tlas equation in the form
ob Fap (S8 This wonbd he omsdeading, hawever, since thee
coeflicient natnees wondd e sectangolar (3 by Gins, aned
the pole of b (129 as the sehicle retational equition
wonld e olnared To emphuasize the pizsony phivsical
significance of this cquatices s wewntten m symbalie
forn, as

40

Ly
. '.3 ,_‘__—_,__,T,_.._. .

s 4 ) ww-—-—_m T

Mool oA
(1

Y [ S R T SR Y2 YT

[ DRRY AT R N

CHAL R MG b bl

N
(x

b

Thois farm of the vebiiche rotatonal cognation can be con
stvscteed from B 00 gquite e chanicadly o defining
as the conflionent matris of & obaerving that this s
wattis permits el 1o accommndide all second dogee
tevms i and then dedimnge €t oicdade wl eoms m the
conflivent matvis of wonet whacibed by Tor i Mach o
instght it the sygnificance of Foand £ may o ggating o Ty
inspecting b (LI swhich s the vector dyvadie antec

dent of B o829 W ath ths osvanpmat ey comes thie 1 al
wation that s the e variable et ity of the
total solncke i basis (W) refered 1o the vehiede mass
comter The term Goaccommodate s the “westial torgnes”’
applied tathes vehicle due o the cogiolis woc leraticons of
appendage and dinnper so b Tus the same physicad o
g s the maton G ol Fag (0800 10 shonld he netedd el
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the cocflicient of ¢ v Eqg. (11D s the transpose of the
cacthcient of 5in Pl (b de,

L R s M M, N R )

Vo, R T

(H

S svitiaet e nvatvin s s owen teanspose aned ashew
svicttic matiis is the nceative of ity transpose.

veaations cbaond (L e conpled with cach othier,
and Fe (L s abso compled with the equations of motion
of 1otor and damper, Nonetheless, physically hased angu-
ments can be intradinced that tond o justify the use ol
a banstornation on g, which coconples the new detormie
tion variables in e () ondy, feavingg hinca combing-
tions of these variables in each of the scalar-cquations of
e oML Tomcation of the nes detormation comdinagte
wateey swonld then penmit substantiad redoction ol the
e of soabar copagtions e cptad tram P (HO), aned
this wonld provide exact solntions for the compdinates
retaned only ol ws e obtained o g VY s
mnetlucnecd by the sovdoded coosdintes. This secis
amte an anceptable appresimation. st in geverad the
appendose vibrations wet ool as pettothations one the
wetian of the comtrathdl v lac e whichove danmnnted In
the vantral tovgae o 1y oL

Pindhe then atiention focnses o the quest fon anoo
e Jorunihion
conrdieios e the G coguations ob B ol io: Ol the

it franammation that aeonpics th
'Ilu'l(l[;‘\! nenus cotatiog

\ 7 iV (;'4[ h'., \'q 1 AERL

I tcihvant ot search

Mtbhomed mestieos M el D e constant madne s
GO and Ay vy with e s they depuenel oy
coatd O cose Cand e ety koo Yo oo
aette reasonable me e present contont o space vl e
athingle comtent sostom ammbation focas e that - variey
andu Stigthel fronn the pominad valie sy W wlach s
Hie abgortinve of ahe cantial sesteome Undes s ssenop
ton boonad Tieanization vomoves the unknown 1
Prowe e hoprge e onn oY s thes siad g
appoars o th b cgaatien ol as o Laten of g oog g This
o e guate et that o L o Ao
of Toveae second onder copratimsowitle cocthoents depend
it cvphicatiy on tage
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No general procedures are avaikible for the transtor-
mation of Fq. (163) intoacsvstem of unconpled equations,
This can be aceomplished m generad terms only when the
coctlicient watricos are constant, which reguires that the
nominal vidue @ be constant. Vhis s surely the most com-
o sitiation of interest in spacecraft control, but it
esehdes cortain appendige deploviment and transient
operations prablews,

20 Ntate-equation modal analysis, Consider then tle
special e of Ego o) tor which M D7 G/ and K
comstant, ingphving A 0 This second order matriv equa
tion cair abwave he represented by a finstorder equation
(the stute equation: This is accomplished by defining the

120 by 1 omateis
“
¢} (
.

aned writing .
[SELle 1

where
0
(MR

/ ,

Y (L

MG D

Hove B 2 by Bt and eich of the paahitiesis
shosn e Vg T s o donension By by e P
Vion b b e B oot il s content as B 003 s
1 contumen ths coprdion i adhition te e denhiny ¢y

Lanear, constont cocthew nt dilferentid copstiens sach
an L CF0 adveans Tase sohistions of thae fonn

[ T T R

whene a o P by b matiy wkich
frone e (LED manst poatition imto a fin by 1ot ¢

ahove G In Lot e

o weaho and o

IER)

The vahidiy o ali sobtiens inhcated i g (187 0
e combinmed B sobstitution anta b i1 v khing

A b Ha-

st o Thee st e b o waentter i te consven

tiomal fonm of an vigonealne prohla,

Hoa £} Rl
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so that A v an cigenvidue wnd @ an cigenvector of B,
The existence of a salution as i e (7)) tollows from
the existence of at feast one cigenvalue of Boand its cor-
responding cigenyector,

B seadar termas, Fa (-9 repsiesents ooset of 120 hoino
pencons algehraie equations in e 120 0 1 unhnowns
e ey cand L Nontrivial (nonzera) solutions for
B enist ondy when a, tihes onccertain characteristic val-
ues o cigenvadues such that the determinant of cactfi
cients s zeras by Crioner's rales T other words, values
ol AL st e sclected that sictisty

A Y ¥ B Iy

There are B2ne solations A, A b Bl o1, s
iy he confinmed by eapanding tie detenminant mto the

pebyiionnal

hy oAt by, cha v bhoa b
(A VoA A tA A a0

(1ot

,4\"" i

The wtiey Hoand the setated cofloents b, L ae
readl nwhers for coguations it stem i the dvnaie
cuabions of o Ve Thorcton the comples vigennadies
NERITRI TG LA L et nunpll'\ tonjupate P
Subsenpts iy beoassigned so thait AL AT Gistorsk
here dhennto s llll||llll vronpptade

Cotosponding 1o cacke diste t ogemvadne 8 taa
exnisty e i cbon b that can he deto oo o swdhn
a mndtpheatn e constant by sobvigg Lo 0B A vom
phetelc mmgue solition s ot el syt awe
R Y TRTITS (ET1 R T I T E I TR |
il pendent e heane cgratiens e the L ambaenens
it dowath v spwecihea by b o UM When e
ezenvaducs wie distinet e s ctoes e e odent
(o et 88 ppe INEH S Do wheac e ane nopeated
ettt il the coreesponding ey ey tors may i Y
wole preendint

b of cnuatione, in Iv‘

Phe vahdits of g ot bor o porticabanr © ol 4

Roatante e s asowa b the valdoy o
(o 1} (It

since e comploy congrsate of zegooas aere and e oon
pgate nba prodoctas the poadoct of s ongegatey Becaise
ALy M eng v edtors cotesponding t gl s
Pt b oo nivaines are brone o102,
Conpugtals pours

n‘au t n!l!]"v r
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Although the solution to Eg. (145 has readily been
tound, and certuin of the propesties of the solution have
heen noted, these steps have not vet aceomplished the
nain objective, which is the discovery of w tinstormation
nietrin that uncouples the coordmates in Feog. (18D 1t s
i most Gines not essential that the result he w second
order differential cquation; it may sutlice to abitain a fina
order eqguation sucl s Fogo (B0, bat with a diagonal
coefficient tatuin, AMthong!e it s possible o generate o
transtormation frome Fao b ED 1o an vmconpled svstem of
secoms order equations when M and X7 e svinmetiis
annd G0 s sSkesweasvinmettic i is possible te diagonadize the
stde equation (L even ore generalls s The Fatter ttuns -
tormation is considered finst.

Wi detined as the 120 by 120 matris whose columns
Sk of the matrin 8, then
I dmspection of B cHISY ane may winte

are the cigemectons @,

Bio Bl o i ne o
[a, e A et )
AL 0N
A
[ W
1 \
A it
o+ It
( \

I fodlon s that, a4
the dzon b

oasds premmdtphoddion prooviees

oAl (hh

The oamtoner of 0 nvassied b the dotenmmant ot o

wnonactg el the et v bops b e andh

powdent B ban heen poted that the el peidonre s
gotatite o when » Nowawre bt o the oy
variie svstom of Ly b the aoddeponedenes of the cagen
weetnrs can beoassred o i wathont this ostn bon whien
MG and R e comntant andd Ve B e eern Y
teceasary sapportinag argunse ng s brieth sl an
the follinimg patagragphs
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When the vigemvectms are independent, the general

sobution to Eg 88 s the hinear combination of solations.

b the stmctune of B (BT e,

¢ N v (am
The sealn constunts 4 e established by inital condi
tions B follows trom Fao 195 that it the real pasts o
Ay, L
dittons providimg sutlicienthy sadl vadoes ot A,

Core nonpositive, the response o imtial con
A
is o sohition O wath ansalatiails siadl nove by othe
words when the read parts of the vigenvalues of B oo
neapensidive  the nodb selotion of B cEDy s Biapmes
stahile Thas s trne evens i there are tepeated cigentatues,
as oo as the cntenvectons e indy pendent.

I oon the ot hand there ween ll‘l)l‘.ll('ll vigenyalues
E voooawth dependent cigens cotois, the aeral

salation would hevome

(! Vot Ay
\ L S (NG
It othe eal oot ot oot the fchon 007 s an

Bovnded vad the il sobation ol g cFR s anstable
Vs stadahin s prosdbde i e presence of depend
vt o ctors soby o the real et et the cotrespordingg
vt ns oo s e wativg

St b e d that the b sodntion of Fag bbb,
et ted oo constant VG0 R el to eere vabaey ol
Vioand 17 Lence of the connespenadines g T
aned oot the vgencabines o AL
vl pratln

i [NTRITTIION ot
hinve ~ Phos comditins Ty b shown
teo b

RIURNIYERINE

woompathle sath the presenee o alependent

The Dot g Mg g Ry Baagminos ot
v Wet W L swhen Mol K posits e e i
socnneder these condhians el sobition ot | " RERE
cob Bowee el Vo T e bagneen sahle By e bt
Chag ST M postine adehinnte The mateoy K dechued
i Lag ool poeotsbant of te positing
detinte stith o matne Kphis anetoe poe ded T 1l
contologged doree

XU uln "o

Pl sndicrd by osebicdh oot n
Ioss contrdond Gomees ane seocwteat s toescned the s Lt
forcrs b the stewe e e wh hocase e appe g
wonle pdbaprant e ot K posttve defute Hhina
et ol reasomable cironmstance s e nadl solntions ol
URTERE R CRRIIT I N Lo the noted
tosten b

are Fiapmoy stable,

IPL TECHNICAL REPQORY 32 1340

Becanse the matris G in B (143) s skew-symmietric,
and the symmetric matrin D has been deleted, chere
G evist o eigenvadues with negative parts, This s
a vonseguence mathematicadly of the absence of odd-
powered terms in the characteristic equation (131, In
phyvsical terms, this iv o vellection of the facet that the
appendage as presenthyidealized has no dimping, and
comeguently: ne attenuating solutions are adiissiblee,
Thas Liapuuov stability of the null solution of V. (113)
must mean that all cigenvalues A, AL have zero
teal poats, nndecpiesent vestrictive assumptions,

Conseguently iv ean be concluded that, for this oliss
af svstem, the cigenvectors 4, bt e indepen
dent. and the matiiy 40 abwavs eaists This mcans
that tiwe operation of Fag. (3530 s always possible, and
matiin Bocan adways be dingonadized tor the problem

under consideration.

In application to the ditferentiad cqguations of the space
vehicle, the appropriate wanstonmation procedune s
ataghttorswadd. Fach of the equations iimvolving ¢ (Fgs.
IO, TR, aned T3 for exvanple st he rewritten i tenns
ob OV as defined i By (00D Thos Fogo (B0 becomes

O Bo L (s
wheve e fernsy of e by 1 subioatiieos 0 el 17 ovee
o THE the B by b matos s JOL7) Bguation (1D
v he writho o as

Lo G

[ L 4 o :‘\Ii\'* b ombil,

(‘3‘\)

whene the Vi 20 covthornt matony ot Qs show i
a3 b i pacntons Bocadl thar o weitong By ol
fromn g 0829 the anatiees Daond Gowere noted o de
peash onegoand oot atices i Fgo oSN peguane
vefonmdation me teoms of 0 Sisabaeds e e e
Vot cERE and e others ivolving g ape casily powanten
i terms od O T e eme would iormadly ooy gl
teanstormation nao best onder cooatings all the w1
phomg fon ovample the sccomnlondir soalwe daaaper
srpration by twa fiest LR RTHRUTRIN Iy antedi g
ol U natens o [ s was o e by 008 and
sl plaome § o by 108
The transtormation
¢ (199

oot adnadie o whoever @ appeoans sneam of
coprations of the sobuche o contiol sosteoy el T

4)




is then premultiplied by ') The transformed appendigee
eqguation then hecomes (by virtue of kg 150
Y 0
Y Yotk
{ 0 4\1 "o

i Hn

ansd the vehicle votational cquation (138 beconies

Lo de 0 0,
[0 (N, ¢ Ry mbil -1

e

SUAMIaY b

The seabar equations in Fo. (1) are not dinectly con
pled by the defermiation cootdimates in Yo 1 shouhd be
neted, however, that the matvis Lo B (16 s deter
mined by the hise rotational motion obtaned  trom
Ea (6D, and in gencral, alb of the sealar variables )
paunticipate in Bg (1600 Thus when the tatad systen of
ditterential equations is consideréd, there is snll conpling
snpeng the detonmation coordistes e Y Toocstion ol
the B2n by bmatein Y and the conresponedingg 120 by 120
transtormation nutvis kst therefore he besed one the
corddered pdgment that the coordinate conpling is weak
and phascallv ndicect Sueh argiments support the prae
ticr of detorapg comdinate ancation priacipaliy hom
the aowoupled appendage detormation cguatinns i
Fop oot 1oamay e wecossany to consider also oot
chiaracteanties of the control sasten sachas the nage of
trequencios o despotse, sensor data ooy fittenmg
mond the bocatiom of scisors ad thiostors Diseussion of
Huese questions of contral syadem intesac i s postpon
uthl Sechion VL

The hometomeons sobitions for 0 in L (109 v o0
connse e sane as that ebitamed by sobvig Py o34 o
Voo Lo zovo el skttt ito the taosdonmation
of b a1 Booeation of Y s normady accomphishe d
B nspection af this homoveneons solutin, althonngh o
1 .||m l'l nevessay to Ilulluh' LEA tlﬂlldill.lh\ in
thai ey introschie e resonances e to comne el e of e
miagimaty st ol e conn spotdingg & warth o divang fi
aneney e e torcnsg teom Do b s Since o
tens iy detoimbned trome plivsical consirleratioms 0 s
g tant ot the phoacal suaficane of i varhlos
L Yoo by anderstoed s oy seen ditlis alt,
NIRE unn;'lr\ g bors b rake the conpdmate s
) Yoo genendh comphoy even when ¢ is by kb
b real asec b W The idicated lmluc:_;,;clu'nln
solntiorr of Lo b s the o lements

Thus the solution shown in Fag. (130 may be written as

0 Yo

(e

in conformance with Foo o9 Although individual sea-
lars )
of s assed by the appearasee of cigenvalues and
cizenvectons an compley pairs, Consider, for exaanple, o
solution tor Y with mitial conditions selected so that all
values of U Fg o2 e sero eneept 4, aad A
Then Y is

and colutme matnices 4 are comples, the reality

AL hy R PN (LT
Pet v o e and @ it and sulntitate
et et o b e i cte Then QO beconaes

e e N "t b

K NI ]

1\ LIPS U ITINY SRR RN T TR
Suce (i realc s A Lot Ay Oy D0 2
that (o L vesotten inowhollyv-read teams s

(S S AR TICNIN YN &

[NEE 2R RTINS R WTTSTIN A8 R3]
Thus the general homosenemes solntion far Q0 appears in
[&l]

veal terms as

N e O aved P A
[ RIS SEENTYRTIN S B R TONTON B3 | [
The Lanscabs o, Cooand 0 D e estah

Fvhsd by the anntd comditmns on €0 Fon e i bongud
sostem asaa b o bE e swhen 8270 0 the oo "

e ali s

Nt conndpnate tonme o can b Based o e sanm
tattonale trehitiomadiy ciploved Ty st tarad dy nan ises
e applicaion toosccond order copntizas of iatien Fach
compigate pabt of comdinates sy, Y owwdl Y V)
com \|mlu|~ o -ll‘lN‘HlLIw sihaationy aof the cntie st
e ab a given beguenoy o o tn i neral, thes
vibrations wee not s phose theongh mt the stvcte oo
wontled by the cane fon st potiab wosdes oF vibeation
abont et conbgoration The clisac mterp tation ol

[} Ao IO the ongemvector o of } o TN s e meede shape of tin
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vibration at trequency o, is maditied by the compley
pature of ¢ e i As illastrated inoreal terms in
Fay (160, this is reflected as two different mode shapes,
corresponding to twa vibrations at frequency o, with
K dey phase Lyt Furthermore, these mode shapses de-
prud on the inital conditions. The coordinates i Y e
still catled modal coordinates in this veport, despite these
deviations from the classic interpretation

The naual decistion ot the stroctural dy naanicist i to
vetain o tuncation the responses at the lowest saturad
bregquencies, and also any others at which expected din
ing frequencies are close o natural frequencies (with
ronsequent daneer of tesonanee). The justification bor
conventrating on lower freguency tesponses i often
Bosedd on the fact that storing a0 given amount ol encrgy
as potential energy or strain energy in the detorantion
ot an clstie stiocture inte o low-lregueney-mode shepe
generddly resalts in Lirger displacements and base reag
tions than ate preseut when the same enengyis stored in
a high treguency mode shape defonmation. P this it mas
he adeded that the present elastio model s uneidstic in
s negleet of damping, and that, én taet, the highon Yo
deney sbations will Bove e dhunpiagg than those at
low bieuenss . Phis wgainesoppits the practice of ipom
g the highe Segoeney tespose ginee it apidhy attean
wtos in the trsient solubion anyvssas s

The appendage defommation maton Y i Bgy oW Ll
b s thenc fore replaced by the 2N By b tiincatenld
bty

Y . 1, [N E ity

whese N the nombor aoF tiodes to be preseoved an the
sindation VPl tanstornaation nudein iy aeead ngh
tnneated o the P2 bn 2N matiis b wheae

T W et | (7

e cgnation ob motion ob $he appodaee g H01 o
baes o s

(10

0 \,
o P

ion matoy o podion consists oF 2N soalar vguations in

the compleoy vangahiles ¥ I 2O I o tom
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putation, only the first N equations need be considered,
sinee the equations wre ancoupledaond the second set of N
varibles iv available as the comples conjugates of the
first set.

The rotational equation of the vebiele (B 16D then
‘N'l“l”l'\

AMIBY b oabil - r

it

The mitrin b s rectangular, and the svimbol &0 in
Uiage (1681 reprosents i febtinverse of b This is available
(Reb 3 as

T e "

(17
as may he confiined by the mnltiplication
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The mechanival process o incorporating damping in the
appendigre cquations iy straightforward, Foguation (168
mchudes a diagonal matriy of cigenvalues A, S AN
AL A s aadenlated o the matin B ot B, (s
with D" setequal to cero, these cigennvaues will be purcly

\

wiasinany v A e o mcarporate straetural damp
s, care instead substitutes ) v e into gty

where o s chosen s noted i the precedimg, pavasraph

It showdd be noted that the procedune just descnituad
tor tanstormation o modal coordinates and snleesgent
trancation dish not vegquire any spreciad properties ol the
comstand bty Boan B cbEBC except i proving the
evistence of @ By (000 The ooty of @
wis established By el upon the show svietiy of
ity GF wd the absence of the viscons damping, i
o D g B This property was used o prove that
evea i the special case of repeated cigemalues, the
medependence oF the cigenyectins s assuned. sa the sohy
ton fo Fo o PEY Bas the ot ot B (8300 cathen than that
of P o106 The proot wouhl provecd equadly well it ¢
were et bat when dangpimg is present the bmal wpn
ment nndeivingg e peviows disenssion hieaks down
Mitbongh it seems easmable that contimaty swonhd
requine the preservation of the nonsingedants of @ the
presence ob sl dhanpine forees cwith s coesponld
mat DY mchaded i Fog VEE sath D svnnnetioe proal of
this conhibion seoms Jachingg

Hocan b oerted then that onhy wlivse et enasty iy
the prowedhine apphed bere to tansbonm the state vgua
Bon e o the daonal oo applicalide 1t i pe
Taps woath vepeating that the castence of 40 iy assinnad
when the cigenvalies o 1w distinge, o whon the
ey I s zero Hos iethot s s heen shong to b
apphoabl camy hoeae v st saith distan
stk Geguencres and tooans abangs d Binean Qv s
svsiom Nppheatuhiy o damped Tosean dhiamie svatens
withore IR ] tatntal dn TR ETR AR IR R TR ||I|||m|tlv |n.| TS
not been forndly estabilinlyald

& Modal ynalyvis of dapipadd, noanrotating strug tures.
he anline ol the diet anadvsis of the sbate crpnation
s depend e the compotationad ethownoy of e oo
sfo ol b rabter teascations B shondd Be ot | that b i
wot sthoond v 00 2 e oo (b %8 has shown
that ihen €0 i oee DY noncsero, wind cigens alies ars
st certam wontite Carthegomadity tehaionshags onn
b ostablishiedd Fone oo s the v adence of TN
wed CEE il the foateorder equation
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Phis cquation combines with the ychicle ciuation (169)
atnd paradlel cquations for votor and damper to obtain a
complete simulation: Equation (173 i not applicable to
the ditterential cquatiins of an appendage ona rotating
Dase cBgs T and 113 with (0 O When the hase s
ot rotating, and specific tluuping torees are ITERENWITN
tperhaps becanse of disaete dashipots in shie svatenn), the
method ot Foss s compntationatly saperior, hut mathe-
rtically ciuvalent. to the more senerad method e
o denve g (v Both of these methods lave
et undesnable features:

B Peept i the veny special case tor which 4 0
and D polyvnomial in the sy ametric ntces
W and K7 (Ret, 300, e videnvectors forning the
soliney of the transtontion matrin b are com-
plessand s the new defonnation variabdes ¥
mttoduaced e Eq (0 e akao comples, \lthough
phy acal mterpretation of the campley coondingtes
chovonptate pairs has been provided, this intes
Eretation s less immediate and pobably Tess com.
fontable for the cigmecr thas wonld he o suatenn of
tealcootdinates Now congiten pProsgeaios might b
vecossitated e the suaulation e tenns of com
pley cootdimate o whieteas NI presgrais iight
sublice b a osefol tastormation to 1eal voordimates
vt b bonnd.

R B TR YT vtatiog of ot ol apps neda
IO A b T st oo it vejtation
Mthongh vontoly vneie 18 an findding increas
e e st cguatias. e st ol
Vet s o e onstonmed e worhimg with
secatl order eognanons ophbion withy exvisting
sompator pratans may be prochadod o ano
pretation ob el iy be wpedid T e adup
tonod st onder ot

4. Modal anulyris of tndampad, ratating steustures.
Whow e B cbrv e e bt ity v ol the
hompan naton 1 e 200w altenioting to the thane
fmation o L B can b devined that 1oandts ulty
el e ystem of wncanphod teal secomd oy stalw
vt wb=motion s method e imapphicable when
damping s wmclnded iy il matical moded o e
b o stactue althongh the itrodus ton ol e lal
ampin b e lanstoni Cepations iy ot e Jueded
Phe tansdomation to be dosenbe d wall i onple the
B ieous s orad ordeg appomlite cquations evn
whew the appeonddage 1 on g tobabing hase (o that €0 2 0
b S bt s sl ot he succnastul b a diserets
dshpar w corporated g the appemdage o the ap
Peoddaste support stractore . sing s then 1° . 0w by (ML
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The general solution for e (M3 with A 0 has
already been tound, sinee ¢ is identified in B, (1D s
the wper hadt of Q. and the solation for Q has been e
corded inreal ters in Fag. (1651 A noted prey iously,
wais zero tor all mfor andamped svatenis, o now the
upper halves of ¥ and e denotesd by the corresponding
lower-case Tetters (s in Ea TS for @, the sabstitutions
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where Pis the transformation matrix

By inspectionob the matrin Z7and its tie derividive, one
may write

s

where o has been detined as the tin by G diaponal matzis,

ot natural frequenvies o, T

bols :, sen that B Q17T iy e wanttensas

(SO

whie o detines e Bin by colnme mataiy
o divonal watin o !
teciprnaly e

wied tie ine by
whine elenents are the Begueney
N U (TR RTINS B
Log oS bevonies the wt ob seabi equations
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The finst secob Gnosalar cguations i B (182008 trival,
Bt the seromd set v a group of 6n wncenpled couations
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To accomplish o diveet tanstonmation: fiom g in
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cralizod coordimates ditcetly oo another is called ot
tramfeamationy As notedt i Whattaher (Reb 24, p 10,
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7L TECHNICAL REFORY J2-1229




mto unconpled second order cquations such as B (183,
nnless G s abso ceros The existence of @ contact trans
tormation that aceomplishes this objective when (27 0
s noted e Whattaker (po 1270 where eguations ot motion
are apressad m teros of Flamilton's canonical couations.

Whoneh Fgo o has been the starting point i the
aneat tor anctul anstormations it is the inhomedeucous
commterpart. P (D0 that mast aet i be cmploved
in the siobation e tenns ot finst-orcer equations, it
Foo 57 amd not g cE that mast be ased. Pivect
swabstitution ot the tanstoration in Fg. (1560 into the
wertid-onder inhomowerons Pge (O does not appear

to he traittal bintead the 0 formation

AV (ST

v used o the tist-order inhomogencons Ege (8970 whee
I nmatny of comstants avalable trom the cigenyvalues
and ciemvectons of Boas e Bgo T and 2 anew
fattin of mnhnow us Vhe resalt s, toom P (1070 and
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Only when Lis zero is the solution for 7 that given as. 2.

by B 0

W hen £ is nonsingubar (@ condition nocalways assuredy,
Fo (IS sy be written as

/7 P'RPZ P oL S

The matin BE has been shown i the conteat ol the
amabvsis of the homogencous cguation (see bge 1S to
have the vadue

reBP (e

and this product of contant matiices canmot change its
value when the cguation: becomes mhomogencous

The nverse of Pas tequired e Ege cIS90 i expiessed
and computed most easth i et ol ity partitioned ele
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T espanded torne, g (IS may now be written (see Eqg. 137 tor 1 expansion! in the form

[
Ve 0 |
o
i
' |
] \ |
/ E
s J Lo M
l' ¢ ¢y
L0y oy

tn the analvsis of the homogencous cquation. with 17
absent, the clements of the column matiin 7, labeled 77,
cane beadertified as i Fao cSE This penmits the seala
equations ohtuned trom the upper halt ot 2 to be dis
canded v vl wdentiies e g 200 and Teaves
the dower halt ot Z to provide weontrivtal, unconpled
sevorcd onder coquations e the new vanables s, LT
o s Thas adenttivation: and resalution mto secoid
order equations docs not appear to be possible e the in
Bomegeneons case Vg 195 anless L
toete Note that the invorted matos me parentheses can
net be vt ot oven e Poas 2o and the apphad
torees Land h'lllul van 'l.l\l' e ('\H.nlm LOINU I e s
Phe mestisetab condition nnds e whach Fog o ponts
s adentiis ation o the clements ot 2 i n “q EAYEET
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LIS AN

Motk the v of bognenoy cntern, the trncation of

the by Dot s by Es3 s completeh st
tonwnd e amph wnores Al bt sooof thy
cdements i when e Qb tes e wyoate ob ity
ext The contdimatos sooane modal coordimats

m o the broad sonse o whiche that toom s vsed e this
repart Tthe selutions o the scalas equations i Eg 18

e nntten s

30

- Asec e

g ——

o r ~
/
o
0 /
t . R -
| S Wy 0
| e e m e e e e - i 195
.‘ W Ty e Jrn
NP QTS N, 1Y sine (
: e (196
N a o b a D cone t \

then salntiwtion into Vg 1560 vields the solatun tor g
in Vi (175 tor ~inch phvaieal interpretation has been
plundt’\l

The mtroduction of cneray <dissipation: capabalits anto
the mathematival model can alse B accomplished i the
medad
Fopaton IS s sanpls eoplaad In

hnnmm*m-nns e atter boastormation o tHy
conndiate st

A T 47

whore the onerbarsmindhentetromeation o N coordinaty s
1
anc

Bothe sheaeaecons caseowhndh oot poman miteor
atthe i Zm 1y
terena as

15 can b winittonn partinoned

/ i os

where Z and /7 anc b by L iatiices The anstonmatem
dioned an b IS bt
[IRRRTHTEN

hemowe neons ¢ then

Y 4 Ve o

JEL TECHNICAL REPORT 32.1329

3 W en -m : -




While it is no longer true in general that 2! and 72, are
related by 72 7 fo,. as was the case for the homo-
geneous solution, there remains an association between
these two coordinates and the frequeney ay,, 1f the cor-
responding scalar equations are isolated in L. (195).
they appear as

VA IWAA

m

[./, ‘y((rb 4 Yl;l ‘y) L ‘]m’,'
and

Zio waZl VLGt L

VA 0 ! 7
S S
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where, when N maodes are retained,
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~21

A

the matrix

ten in more detail in Eq. (200):

7 0! @ 7 0
e [ it ST | B RO 2 (201)
V4 g1 25| 7 1

Modal damping may he inooduced into these equa-
tions in such a way that they reducs in the homogencons
case to Eq. (187). Thi - can be accomplished by inserting
- 275 (see Eq. 197) at the appropriate place
in Eq. (200). The result is recorded as Eq. (201), which
employs the symbol F ! for the truncated B inverse writ-

where the subseript mooutside of the square brackets
denotes the mth row of the matris within the brackets.
Again it is evident that if cither y or L' is zero, then
7. 2l se,. lven in the general case, however, it is
most reasonable to truncate the matrices Z' and 7 by
retaining only those clements Z!, and Z2, corresponding
to frequencies , that are of interest, The matrices of real
and imaginary parts of cigenvectors, ¢ and y, are trun-
cated correspondingly. Truncated matrices are denoted by
an overbar, as previously, so L. (193) appears after trun-
cation as

| - ~ (200)
I @Ay e

This cquation is in final form for the simulation of a
flexible appendage on a controlled vehicle, 1t is therefore
an alternatice to Eq. (168). Each of the three appendage
cquations (168), (173), and (201), has advantages and
disadvantages.

5. Comparison of three alternative transformations. The
three coordinate transformations considered thus far do
not exhaust the usefal possibilities; indeed, the most com-
monly used transforniations have yet to be considered. It
may nonetheless be appropriate to panse to review and
sunenarize these three transformations,

The most general form of the appendage equation is
2. (168). since it accommodates a discretely damped
appendage on a base rotating at a constant rate. In other
words, it is applicable to a diserete-coordinate appendage
cquation of the form

MGi DG Ggti Ky

1 (202)

with M, 1 and K’ syminetrie and G skew-symmetric,
Note that 1’ is symmetric and positive definite, but other-
wise unrestricted.

The methad of Foss (Ref. 36), which results in
Eq. (173), is designed for clastic structures with arbitrary
viscous damping on a nominally stationary base. The

L)}




corresponding diserete coordinate equations are

MGi Dyl Kqg 1! (203)
with all.coeflicient matrices symmetrie and positive defi-
nite. If 17 is not a polynomial in M’ and K’ (sce Ref. 30),
the method of Foss (Eq. 173) is most advantageous, for
the reasons noted in the textpreceding Eq. (173).

For an undamped clastic anpendage on a rotating base,
5. (140) is the discrete-coordinate equation
MGIGq4 Ky L (204)
This cquation has been shown to be equivalent to
Eq. (200), which has the advantage over Eq. (168) of
involving only real numbers (recall that in Eq. 168 the
coordinates in Y are complex, as are the cigenvectors in
&, which must be inverted).

Equation (200) was modificd and written as Eq. (201),
which includes modal damping, This step cannot be
justified in any formal way, since it chviously involves
a change in the mathematical model of the physical sys-
tem. Modal damping is introduced in Eq. (201) in such a
way that the homogencous equation reduces to Eq. (197),
which yields a solution corresponding to Kq. (165). This
is at best a crude attempt to provide some mathematical
representation of the oscillation attenuation that must
oceur for a real structure, In fact, the substitution of the
solution of Eq. (197) into the expression for ¢ in Eq. (186)
yields resuics corresponding to the true solution for ¢
from the top half of Eq. (185) only when cither y or &
(and all o), © ©+ L aw) are zevo. In the absence of dis-
crete dimmnpers, one might nonetieless reasonably neglect
cuergy dissipation in caleulating A, and ¢™, but still
incorporate slight modal damping into Eq. (201), using
past test experience as a guide in selecting &0, - 0 ¢, ¢y
This procedure involves minor mathematical malfeasance,
but it may be considered acceptable engincering practice,

Three possibly useful final forms of the apprndage
cquations have been provided (Eqgs. 168, 173, and 201),
and their advaniages and disadvantages discussed, Each
of these must of course be accompanied by the semaining
cquations of motion of the vehicle, as derived in the previ-
ous section, with appropriate transformation to append-
age molal coordinates. For cxample, the vehicle rota-
tional cquation corresponding to the appendage cquation
(163) was recorded as Eq. (169). The corresponding equa-
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tion for the vehicle to accompany Eq. (201) would be
simply (from Eqgs. 158 and 187)

Lo v oalo (" i (e - 'i;)ll‘ .

~

[0 - (x7, 4 Rat, 4 ST WYM)PZ — h — mhiE: 4 &

(205)

Equations for rotor, damper, and control system must also
be included, with suitable appendage-deformation coordi-
nate transformation.

6. Modal analysis of nonrotating structures without
damping, or with proportional damping. Various forms
of the discrete-coordinate appendage equation (Egs. 202
through 204) have been noted, and appropriate transfor-
mations have been considered. Attention lias yet to he
given to the case

MG - Kqg=1' (208)
which is at once the simplest and most useful systera of
equations. By returning to the appendage equation in its
explicit form (Eq. 139), one can sce that this equation
provides a simulation of an appendage attached to a base
that is nominally not rotating in inertial space. If the base
angular-velocity matrix o in Eq. (139) is assumed to
remain small, and higher degree terms in o, o, and g are
ignored, then o may be replaced by 6, and Eq. (139)
becomes

M (E i .\.:t:‘uﬁl;’;,, M/m) é] 1 Klf =
o l‘l (}:..h’ - }.:[-;uﬁ - 7:[-:41)‘0‘

— M F A MEpmEEQN + A 07

which is of the form of Eq. (206).

This simplest case is of course amenable to analysis by
any of the three methods discussed carlier, but more
efficient procedures can be found in any texthook on
structural dynamics (e.g., Ref. 11). Because of the avail-
ability of proofs in standard references, the classic tech-
niques of the structural dynamicist are applied here to
Egs. (206) and (207) without proofs.

As noted in a somewhat broader context in Eq. (147),
the homogencous solution to Eq. (208). or (207), has the
form

Hin

- & cieM'e! (20,
FN |
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where X, and ¢’ are cigenvalues and cigenveetors available  or, more specifically (from 207),

from . _
W4 2a kg =
[M'Aj + K'] ¢/ =0 (209) GEM (Mo Spo R =) 0 - 7 Mg F
assuming the independence of ¢/, j=1, -+ ,Ba (pre- brME o mEE /0 T (216)

viously proven). The cigenvalues from Eq. (209) are
imaginary, and cxist in complex conjugate pairs, ic.

B P i [T AN

The rationale for the incorporation of modal damping
has been essentially phyical; it has simply been observed
from test data that dynamic simulation of a structure can
be accomplished more accurately by inserting the matrix
Consider now the 6n by 6n matrix & in Eq. (215) than by omitting it or guessing at an ap-

propriate velocity cocfficient matrix D’ to add D’q to

b= [glgt - - o] (210)  Eq. (206). It is now possible to establish the mathematical

significance of the assumption of modal damping. Imagine
that Eq. (208) is modified by the incorporation of viscous-

and the transformation '
damping terms,

q=d¢n (211) MG+D G+ Kqg=1L" (217)
The orthogonality relationships and that D' is a lincar combination of M’ and K’,

, 4 D’ = adl’' + BK’ 218
GIM G = 0. k] M (219)

9
MR 0! = () kot (212) with « and B scalars. The transformation ¢ = ¢ con-
¢ ¢ =0 =1 sidered previously, with a premultiplication by ¢7. then

yields

are well known, With suitable normalization of the cigen-
vectors, the condition %+ («E + Bo?) iy 4 oty = ¢T L’ (219)
STMGF =1, E—1 ---6n (213)  Since oE + Bo* is a diagonal matriy, it does correspond

to modal damping, with.

can be imposed. These reletionships permit the trans-
formation of Eq. (211) inte Eq. (208) to provide (after
premultiplication by ¢7)

a+ ﬂd;’ = 2;,’01 (220) -

he two scalars « and g may be chosen arbitrarily, and
with the choice of these two pumbers all values of the

VR 1 (2:4) percentages of critical damping ¢, -+ +, & are estab-
lished. (In engincering practice, more than two values of
where. as previously, modal damping ¢,, + -, & are often prescribed inde-
pendently, which involves a minor mathematical contra-
diction.)
a; (4]
¢7 ==

Equation (216) is the final form of the appendage
0 ‘ i equation to be used in a space vehicle simulation when
' the appendage base is not supposed to rotate. Thus this
is another alternative to Egs. (168), (173), and (201).
Equation (216) is to be used in conjunction with cqua-
tions of motion of the vehicle, the rotor, and the damper,
as well as the kinematic equations and contrel system
cquations required for a complete simulation. Because
the base rotations are small, many of these equations

Truncation of the model coordinates .+ * gy ©
the set y, © + L9y is accomplished as previously, and
symbolized by an overbar, Modal damping may also be
incorporated. to obtain

i+ 20+ -a L (215)  simplify substantially. The vehicle rotational equation has
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already been recorded for this special case as Eq. (130),
With the transformation ¢ = ¢, this cquation beeomes

T 04 h R mb;é-l;‘*'
4 (70 RYL, ST R MG (221
The damper equation (134) simplifies to
m(l - mom)§+ dé ke
MET [~ F 0 4 bEG 4 Xy pdi] (222)
The rotor equation (136) becomes
T =/7(% + E*d) (223)
If the nominal vatue of the rotor angular momentum h
relative to the base B, is I = 0L, and the diffcrence

Q- x is assumed to be small and is included in the
lincarization, the vehicle-rotation equation (221) becomes

T— 14 - -TDF‘ f o+ + JXE + mIJEE“
“* (-ul lln + :l,n‘?) “[‘5# (224)

Equations (216), (222), (223), (224) arc a complete sys-
tem of dynamic equations for a dual-spin vehicle with a
de-spun platform to which symmetric rotor, damper, and
flexible appendage are attached. Vehicle simulation re-
quires only the incorporation of control laws for = and T.

7. Madal analysis of nonrotating structures using canti-
lever modes. As noted at the beginning of Scetion 111-D,
more than one useful coordinate transformation niay be
available for a given set of equations. The prewdmg
cquations of motion for a dual-spin vehicle with a de-spun
platform provide an example. The final set of equations
(216) and (222)-(224) were obtained by imposing the
appendage coordinate transformation of Eq. (211) on a
system of equations (207), (130), (134), and (136) that
served as equations of motion of the appendage, the
damper, the rotor, and the total vehicle in rotation. Note
that the total vehicle translational equation (131) is not
included explicitly in this system. The quantity @X that
characterized the vehicle-mass-center acceleration did
appear originally in the equations of motion of the ap-
pendage (sce Eq. 95), but this quantity was removed
when the appendage equation was written in the form of
Eq. (139), by substituting oX = F /1)) from Eq. (138). This
step was motivated by the desire to separate the vehicle-
trajectory problem from the attitude-dynamics problem,
which is of paramount interest in this report. One (mlld
of course equally well retain the expression ©X in
Eq. (139), and retain the translational equation F = 10X
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in the simulation. This alternative doces not preclude the

scleetion of the transformation ¢ = ¢y of Eq. (211), but
it raises the possibility of another choice.

It should be noted that the decision to write the vehicle
translational equation in terms of the coordinates X of
the vehicle mass center CM was an arbitrary one. One
could as well work with the inertial position vector
(say x) of the point O, fixed in body B, and correspond -
ing to the CM when the. vehicle is in a nominal (unde-
formed) state. Then, in terms of previous notation (sce
Fig. 1),

x=X+c¢ (225)

and the translational equation of the vehicle (Eq. 131)
becomes

F={o8-¢-8c 2 am) (226)
where
x={i}"x (227)

In the linear approximation, with « = 9, this is
F=)[ex--¢] (228)

The appropriate form for ¢ can be obtained by linearizing
Eq. (133) as

= —XI (M) G méE! /. Ui (229)

so the vehicle translational cquation becomes
F 00 = @X4X7 (M) § + mEE i (230)

Although it may seem unwise, it would not be incorrect
to include Eq. (230) in the system simulation (just as
F/ M = oX is carried along with the other cquations of
moticn, except for the differences of coupling and com-
plexity). Now if F )7 from Eq. (230) is substituted into
the appendage equation (207), certain cancellations oceur
to provide

MGV Kg s M (S — S0 B~ Fp) 0 — Mg, 0% + A
(231)

This equation also has the form of Eq. (206), so the
appendage coordinate transformation procedure applicd
to Eq. (207) applies as.well to Eq. {231). The cigenvalues
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and cigenvectors for these two sets of equations differ, of
course, so the transformation in Fq. (211) i5 written as

q By (231’.)
to provide o distinetion. The transformed version of

Eq. (23D after trimeation and the introduction of damp-
ing, is

U AN

CETM (N N R Fp) o M N eE o $A

(233)

In addition to this appendage equation, one must carry
along cquations of motion of rotor, damper, and vehicle
rotation, which are. the same as Eqgs. (222)-(224) except
that ¢ becomes ¢ and # becomes 7. One must also retain
the vehicle translational equation (230), which appears
when transformed as

F =i+ xL (M ) &5 + méE/ 0 (234)

The change from modal coordinates 3 to modal co-
ordinates 5 may appear to be of dubious merit, and
indeed it does have disadvantages. It has apparently
necessitated the retention of equations of translation in
the attitude-control simulation of the vehicle, thus adding
to the dimension of the system of equations being solved.
Furthermore, this change violates the objective of sceking
the transformation that uncouples the greatest number of
equations, since the equations of translation newly added
to the simulation (Eq. 231) are coupled in the modal
coordinates 3¢,

The primary advantage of the alternative coordinates y°
(as opposed to ) stems from the convenience of their phys-
ical interpretation and experimental corroboration, and
from the fact that any structural dynamics organization
has the immediate capability of computing the cigen-
values and cigenvectors A7 and ¢, m =1, - -+ ,N. To
these pragmatic arguments may be added the fact that
for most space vehicles the transformation ¢ = ¢'y' is
almost indistingnishable from ¢ = ¢y, and the added
equation of motion (234) often does not actually have to
remain in the simulation. because the terms involving 3
are small when the appendage is a smafl part of the
wehicle mass. Finally, it can be argued (as will be shown)
that when more than one appendage is attached to a
given base, the coordinates 5 might simulate the append-
age response for certain vehicle mations even better than
the coordinates 7.

dPL TECHNICAL REPORT 32-1329

To properly evaluate the advantages and disadvantages
of the alternative coordinate systems, one must make a
physical interpretation. Both 7, and 3¢, are classical modal
coordinates, in the sense that both measure the participa-
tion of the entire appendage structure in a vibration at a
given frequency (o, or o), with all portions of the struc-
ture oscillating in phase as the structure deforms har-
monically into a given mode shape (¢ or ¢7,). The mode
shapes and modal frequencies in question differ only in
the boundary conditions imposed on the appendage.

The homogeneous counterpart to Eq. (231),

Mij+Kqg=0 (235)
corresponds to the free vibrations of the appendage while
on a fixed base. Accordingly, the modal coordinates in 5
are called the cantilever mode coordinates. Their signi-
ficance is easily visualized, and the calculated mode
shapes, frequencies, and damping ratios are easily con-
firmed by test.

The homogeneous form of Eq. (207) is

M(E -2 LM/ G+ Kg=0 (236)
This equation describes the free vibrations of the append-
age attached to a base that is constrained against rotation,
but free to translate as the base mass is pushed aronad by
the shear forces at the base of the appendage. Note that
the phrase “basc mass” actually includes the mass of all
of the vehicle except for the appendage in question (even
if other appendages are present). Experimental corrobora-
tion of the mode shapes, frequeneies, and damping ratios
wonld be difficult to accomplish directly. In fact, when
these coordinates are used, the modal data would prebably
not he obtained directly from Eq. (236). They wonld
instead be computed by first applying to Eq. (236) the
transformation ¢ = ¢“y" to obtain

B @ T (M EpXE M) ¢ 4 (o) g =0 (237)
and then efter some truncation secking a new transforma-
tion to diagonalize thesc equations. The cantilever modes
would then be available from the preliminary transfor-
mation, and experimental corroboration would coneer.-
trate on verifying the cantilever mode data.

For vchicles with more than one appendage, it may
happen that the cantilever modes simulate the vehicle
behavior better than the modes with the base rotationally
fixed and translationally movable. Consider for example
the rigid body with two identical and symmetrically dis-
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Fig. 10. Vehicle with two appendages

posed appendages shown in Fig, 10.* The sketches in
Figs. 10a, b, and ¢ show the vehicle as it might actually
respond if it were rotationally and translationally free,
Among the many modes of vibration of which the vehicle
is capable, the two shown in Figs. 10b and ¢ involve
symmetrical and antisymmetrical appendage deforma-
tions, respectively. In either vibration, the vehicle mass
center must stay on the inertially fixed line shown. but for
the symmetrical deformation in F ig. 10b the base-fixed
point O moves, say, a distance €. If iow the appendage
response is to be simulated by means of a single modal
coorcinate, either 5* or , one must judge the acceptability
of these coordinates as the corresponding mede shape
conforms to the actual deformations shown in F igs. 10b
and c. This correspondence will depend on the faithful-
ress with which the assumed boundary conditions of the
appendage match those of the actual vibrations. As illus-
trated in Figs. 10e and f, the cantilever mode permits no
base translation, while the mode with base movable only
in translation does allow the base to move an amount
8 < €-2. Thus the boundary conditions shown in Fig. 10f
provide mode shapes better suited than the cantilever
modes to stimulate the symmetrical vibration illustrated
in Fig. 10b. Conversely, however, the cantilever modes,
which permit ne base motion, more accurately match the

(E = "M xe.ST, (M/M) )5 + 280 + (09)2 g =

boundary conditions of the asymmetrical vibrations shown
in Fig. 10c than do the modes in Fig. 10f. Thus, for a
given truncation, the cantilever modal coordinates 7° are
conceivably superior to the less constrained modal co-
ordinates 7. This condition can occur only for multiple
appendages, however. Since it is always pussible to treat
any number of structures attached to a given base as a
single flexible appendage, the theoretical advantage secms
always to lie with the modal coordinates corvesponding
to a rotationally fixed but translationally movable base.
(The alternative method, which permits rotation as well
as translation of the base, is pursued in Section v,

A practical compromise can be introduced that per-
mits the pragmatically attractive use of cantilever modal
coordinates without the addition of the vehicle trans-
lational equation into the simulation. There is no
obstacle to the use of the transformation q = ¢y°
in Eq. (207). After multiplication by ¢°", one obtains
Eq. (237), but with right-hand side ¢°'L’. Although
these equations are not uncoupled, because of the terms in
~¢' " (M XpXT M 041) 4%, these terms are generally
small. Truncatior. can then be imposed without over-
whelming concern in most cases, and the result is the
appendage equation (with damping added)

= &M (Sug — EgoR — Fpo) 6 — §"M Sy (F. 1 — méE /M) + A (238)

*This exaraple was suggested by R. M. Bamford.
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This appendage equation could be obtained equally well
by replacing the expression % in Eq. (233) with its
cquivalent from Eq. (234).

E. Method of Synthetic Modes

At the beginning of Section 111-C it is noted that there
is a basic choice to be made in selecting the dynamic
system for which cquations of motion should be written
in support of the flexible-appendage deformation equa-
tions developed in Section 111-B. In the vehicle equations
derived in Section 111-C, the dynamic system chosen is
the entire vehicle, including the flexible appendages. The
vehicle equations, in conjunction with the appendage
equations derived earlier, provide a basis for a complete
dynamic simulation of the vehicle. The coordinate trans-
formations presented in Section I11-D are for the purpose
of making the simulation equations more usefui for prac-
tical computations.

Although the approach adopted in deriving the vehicle
equations is always valid, the resulting equations may
not in every case be in a form suitable for efficient com-
putation. For this reason, equations are derived in this
section that serve as alternatives to the vehicle equations
of Section I11-C. Whereas the equations of motion pre-
viously derived were for the entire vehicle, here the
appendages are excluded from the system of rigid bodies
for which equations of motion are written. The influence
of the appendages on the motion of the rigid bodies is
reflected as a contribution to the external resultant force
and torque.

Equations of motion are to be derived here for a
vehicle slightly less general than that illustrated in Fig. 9.
The nutation damper B. is omitted here, since it would
contzibute terms to the equations that differ little from
those derived in Section 111-C. Only one flexible append-
age is admitted, since the cxtension to two or more ap-
pendages is a trivial matter of repeating certain groups
of terms. Relative rotation Q" of the appendage and its
base is accommodated, since it is for vehicles in this class
that the method of synthetic modes may prove advan-
tageous.

Again the Newton-Euler equations of translation and
rotation arv to be derived for the dynamic system, only
now this system consists merely of a rigid body B, in
which a symmetric rotor B, has a fixed position and
orientation, If P is the incrtial position vector of the mass
center P’ of this system, 7)1’ is the system mass, and the
applied resultant force is the sum f +f’, with the latter
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accommodating all forces applied to B, by the appendage
A, the translational vector equation is simply

f+f =P

In terms of the vector arrays {b} and {i}, fixed respectively
in B, and inertial space, and related by Eq, (53), this
vector equation becomes

()7 + (bY'f =W’ (iyP = (b} 0 F
which provides the matrix equation

MeoP=f+f (239)
The rotational equation of the system B, plus B, may
similarly be written as
’ id ’
1+1 =d_t(l ‘w +h) (240)
where the external torque about the system mass center
P’ is separated into 1 and I, with the latter accommodating
all torques applied to B, by the appendage A. Here V is
the inertia dyadic for point P’ of the vehicle excluding
the appendage, and @ and h are as defined previously.
Thus the expression 1"+ @ + h is the sum of the angular
momentum the system would have with a nonspinning
rotor plus the relative angular momentum contribution of
the rotor relative angular velocity. The inertia dyadic V is
constant in basis (b}, so the differentiation of Eq. (240)
yields only

14 V=10 +wXFPwo+h+wxh (241)

In matrix terms in basis {b}, with the definitions

1= {b}*l, = {b}"l, ¥ ={b}7I'{b)
(242)
Eq. (241) is equivalent to
lot+al'o+h+ah=1+0 (243)

The apparent simplicity of Eqs. (239) and (243), in com-
parison for example with the final equations of Sec-
tion 11I-C (Eqs. 129 and 131), disappears when the
appendage force f' and torque ! are calenlated explicitly.
These matrices must be proporticnal to the deformation
of the appendage, which is assumed to be linearly clastic.
The explicit expressions for I’ and f* as linear functions of
the deformation matrix g are obtained somewhat cir-
cuitously in what follows.
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Consider initially the forces and torques transmitted to
the hasc of an clastic body A vibrating on an inertiaily
fixed base. In this special case, the only ine 1 accelera-
tions of the sub-bodies of the appendage ©  ...0se due to
vibrations, and the forces transmitted to the base are
simply the inertial forces induced by vibration, i.c.,

FF=(b)f=—(a}" S mii (244)
Al

where (as previously) the vector basis {a) is fixed in the

appendage base, Equation (50) provides {a}” = {b}7 C",

so the matrix equivalent of Eq. (244) is

f=-Crs mi

LIS

(245)
The vector torque about point P’ is then given by

P={(b)7l = —(a)7 3 (mFiir + I'f") + (b)7 pf
(246)

where p = {b}7p is the vector from point P’ to point Q

fixed on the interface between the appendage A and the

rigid body B,. The matrix counterpart to Eq. (246) is

V=~CrS (m¥iir + I'f") — FCT 3 mris (247)
LED | LD

In terms of the matrix g and the operators 4, and X..

(see Eqs. 83 and 85), the expressions_f’ and ¥ can be
written as

f=-Crs, Mg
, " oo (48
U= —Cr(s},7M§ + 27, M§) — FCT X%, Mij

These results apply only to the case of an appendage
vibrating on a fixed base, and more general expressions
are required for the problems of primary interest in this
report. The necessary generalization is most easily ac-
complished after transformation of the appendage de-
formation coordinates ¢ into modal coordinates. In the
present restricted context of appendage vibration on a
fixed base, the appendage vibration equations are the
“cantilever” equations of Eq. (235), and the appropriate
modal.coordinate transformation is

q= ¢ (249)
as in Eq. (%32). The substitution of § = ¢%* into Eqs. (248)
provides an alternative expression for f* and I’ for the

special case of vibrations on a fixed base. This same sub-
stitution into Eq. (235) yiclds a solution for which

0= (o) (250)
so that Eq. (248) may also be expressed as
f=Crxl, Mg (o) " (251)

and
U= [CT (], 7+ =T,) + PCTXL, 1 M¢* (07)* g¢..
(252)

Aithough Egs. (248) are restricted to the fixed-base snecial
case, and Egs. (25]) and {252) were obtained from
Egs. (248), still it can be argued that the expressions for
f and I’ in Egs. (251) and (252) are not sc restricted, and
indeed are completely general (for an elastic appendage).
This follows from the necessary uniqueness of tiv: force
displacement relationship of an elastic struct:ie.

Thus Eqs. {251) and (252) may be substituted into
Egs. (239) and (243) to provide a general set of equations
of motion of the rigid body to which the appendage is
attached, as follows:

I OP = f + CT 3L, Mg (o°): n* (953)
I'(:) + 'J;I'o) + ’; + 'Jh e
L+ [CT (3], + 2T,) + BCT ST, Mge (o) ¢ (254)

These equations must of course be augmented by a rotor
equation (e.g., £q. 136), and perhaps also by cc ntrol equa-
tions and kinematic equations. In addition, some form of
the appendage equation is required. The faul results of
Section I11-B would suffice (¢.g., Eq. 84), or the individual
sub-body equations of motion recorded as Egs. (79) and

_(80) may be employed. Whichever are selected, the ap-

pendage equations must be subjected to the transforma-
tion ¢ = ¢y" for coordinate consistency.

The final system of equations of motion is useful in
space vehicle simulation only if sukstantial truncation of
the appendage deformation matrix 4° can be accom-
plished, This step cannot be unrertaken casually in ap-
plication to the equations of m.otion (253) and (254) of
the rigid body to which the a7spendage is attached. The
truncation rationale advanced in Section 111-D favors
the retention of the modal coordinates with the lowest
frequency, and this policy often produces seriously de-
ficient representations of the force f” and torque I’ applied
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Fig. 11. Example for faulty truncation

to the appendage base (except when the base is stu-
tionary). This fact is easily illustrated with a simple
example.

Consider the vehicle of Fig. 11, which consists of a
rigid body B with a cantilevered clastic mast with a tip
mass m that greatly exceeds the mast weight. It is evident
by inspection that the lowest-frequency cantilever-mode
responsc invelves transverse bending of the mast (see
dashed lines of Fig. 11). A modal response of much higher
frequency corresponds to vibration along the longitudinal
axis of the mast. If this high-frequency mode is excluded
in the modal-coordinate truncation process, the mast-
vibration response and the transmission of forces and
torques to B is faithfelly represented if the body B is
inertially stationary. If, however, body B is inertially
accelerating, the force f and torque I are grossly mis-
represented by this truncation (although an adequate
representation of mast deformation may be preserved).
Imagine for example that B is accelerating at a constant
rate G, along the centerline shown in the figure, so that
the appendage reaches a steady-state small deformation
after vibration attenuation. It is then obvious from first
principles that the force f must be of magnitude mG and
must be directed along the indicated centerline of B,
and the torque I must be of magnitude mGe and direc-
tion normal to the plane of the paper, where € is the
cceentricity of m as shown in the figure. Yet if truncation
preserves only the transverse mode sketched in Fig. 11,
the foree £ in Eq. (2531) must be directed transversely to
the mast, and the torque must be of magnitude f' L, where
L is the mast length. One might say that the truncated
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simulation is deficient only in its exclusion of the rigid-
body modes of the mast. Although this may serve as a
cone. ptual explanation of the problem, the difficulty is
not rectified simply by adding rigid-body modal coordi-
nates to the modal deformation coordinates in 7, since

.this would unduly increase the interaction forces. One

may instead devise “synthetic” modes for inclusion in 9,
as first suggested in Ref, 28, This procedure is briefly out-
lined here for a special case that serves to illustrate the
method.

Consider a restricted problem of the dynamic simuls-
tion of a vehicle consisting of a rigid base B and a flexible
appendage A. Let the base B be restricted to small de-
viations from a state of inertial rest, while the attached
appendage A rotates relative to B at a small scanning
rate.

The base equations (253) and (254) then become, in
the lincarized approximation,

WB = f + CT3], Mg (o) o' (255)
I =1+ [O7 (35,7 + 31,) + BCT 35,1 Mg (o) (256)

In combination as a single matrix equation in the 6 by 1
matrix variable

P
Us=|-~- (257)
9

these equations may be v.ritten as

]U = A+ Sp CTXL Mo (a%) 9"
+ Zog [CT (87,7 + 2,) + PCT2L,] Mo* (o) 9°
(258)

where the new symbels are

and
A=|- -~

It should be emphasized at this point that the number of
rows in the matrix operators denoted by g, and X.p is
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established solely by context (see Eq. 83). Because the
matrix C' in Eq. (258) is 3 by 3 and the matrix A is 6 by 1
the pre muhipliu Y., must be of dimension 6 by 3. The
premultiplier 2%, of the 6n by 6n matrix M must, however,
be of dimension 3 by 6n. It is conceivable that a symbol
such as ¥, may appear twice in one equation and rep-
resent two matrices of different dimension, as established
by context,

In conjunction with Eq. (258) for body B, onc must
consider the appropriate appendage equations of motion.
These must be constructed from e ingredients of
Eqs. (79) and (30) for the appendage sub-bodies, follow-
ing a pattern established in detail! in Section 111-B, and
calminating in Eq. (84). Present interest is restricted to
the case of small v 2 #, e = 0, and variable C. Appendage
equations of the form of the cantilever equations of
Eq. (231) are sought, with added terms as necessary to
accommodatc the slowly changing dircction cosine matrix

C (or the corresponding angular velocity ), In Egs. (79)
and (80), the only added terms that survive linearization
are I'?" and —m*7Q°, respectively. Thus the necessary
modification of appendage equation (231) yields (with P
replacing ©X and J replacing R)

MG+ Kqg= ~M(5,;C— 5, CP —73:,C) 6
~ MSp CF + A~ M (305 — Fig) O
(259)

A complete derivation of this equation may be found in
Ref. 28, although notational differences must be recon-
ciled to obtain confirmation. In terms of the matrix U
of Eq. (257) and the cantilever modal coordinates 4° of
Eq. (249), the appendage equation is (with modal damp-
ing included)

i+ 2L A (@) g =
~¢"M (305 C — 25, CP — ¥35,C) 57, U
— ¢ TMIp CSL U+ ¢ A — ¢ M (S0p — FEp0) O
(260)

Equations (238) and (260) constitute a complete set for
dynamic simulation, requiring only the specification of
external environment or control law for the explicit de-
termination of A, A, C, and Q" Inspection 0. these equa=
tions reveals the repeated presence of a 6n by 8 matrix,
here defined as A (somewhat different notation is em-
ployed in Refs. 28 and 29), as given by

A==z =T M (8, C2L + 2, C37,

P CX]y — 2 CPY]) (261)

Ia teris of the matrix 3, the system equations of motion
(258) and (260) become

JU= —aT(o')iq + A (262)
and

‘ﬁr -+ 2{4”r7"r + (ar)'.’ 'I)( =
AU + ¢7A = ¢" M (S0g — FS5,) 00 (263)

These equations are in a form well snited for practical
simulation studies only- after truncation of coordinate »*
has been accomplished. As previously noted and illus-
trated with the example of Fig. 11, coordinate truncation
must be undertaken very cautiously if valid representa-
tions of interaction forces and torques are to be preserved.

Coordinate truncation is greatly facilitated by the phys-
ical interpretation of the clements of the matrix A. Cor-
responding to each modal coordinate in 3" there is one
row of six scalars in the matrix J; i.e.; the jth row of A,
consisting of Aj,, © - - , A, corresponds to the jth modal
coordinate »j. From Eq. (263), the steady-state modal
response to a constant base acceleration [’ can be found
to be

= [0y} AU (264)

For the jth mode, the steady-state deformation is therefore

7); = ‘7}2 2 A U,
i-1
=07 [A; P, + 2, P, + A, P,
+ 4,0, + A0, + A0, {265)

Substitution of Eq. (264) into (262) yieldsfurther physical
interpretation. The result

JU= —arali« (266)

provides in the 6 by 6 matrix —AAl" a collection of the
forces and torques (about ) applicd by the appendage
to the base due to a constant hase acceleration. Conse-
quently, the scalars A, have been called “dead-load co-
efficients.” The 6 by 6 matrix AT3 is evidently just a
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collection of incrtia-like quantities. As a matrix of 3 by 3
partitions, A"\ may be written in the form

EONE L

Al = = — = — = — — =~

267)
‘”{.lﬁl : It (

where 110 is the mass of the appendage, ' is the inertia
matrix of the appendage with respect to point P/, and

ptis the matrix in basis {a} of the vector from P’ to

the appendage mass center. Note that the matrix A7A s
syimmetrie (since the transpose of the skew-symmetric
matrix ' is its negative),

With this simple physical interpretation of the matrix
A’A comes a new rationale for coordinate truncation. If
a valid representation of interactions is to be preserved,
it is essential that the truncated N by 6 matrix 3 obtained
by replacing ¢ by ¢ in Eq. (261) continue to. satisfy
Eq. (267). i.c.. that even after truncation 37X = ATA. In
practical applications, this may be a difficult stipulation
to mect; there may simply not be available among the
cigenvectors (modal coumns) in ¢ a small number of
mode shapes that meet simultaneously the constraint of
Eq. (2671 and the carlier requirements that low-frequency
modes and potentially resonant modes be retained. A
pragmatic reaction to this dilemma is the creation of a
number of artificial or “synthetic™ morles designed to com-
plement the desived low-frequency modes in such a way
as to permit 373 to meet the constraint Eq. (267).

To apply the synthetic-maode coneept, one simply trun-
cates the coordinate matrix -+ initially without regard for
g, (2671, and then caleulates the truncated value of ATA,
After caleulating the deviation of this matrix from the
valae indicated on the right side of Eq. (267) (and known
in advance of modal analysisy, the analyst may casily add
synthetic modes 1o the truncated coordinate matrix as
necessary to obtain saxistactory correlation with Eq. (267).
Each synthetic mode is fully specified by six scalar dead-
lowd coeflicients 3, -+ (A, and the modal frequency
o and madal damping 25 Vadues for the two latter scalars
are chosen sufficiently high to minimize degradation of
the deformation response, and the six dead-load cocffi-
cients 3,00 s A, foe anindividual synthetic mode en
he chosen so as to obtain a perfect representation of the
hise reaction to one of the siv aceelerations in U,

Becase a typical element in 373 is given by
(A1), = A4y,

A,A, +A.‘\|A\':

(268)
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where N modes are preserved and i, j range from 1
through 6, it is evident that by adding six synthetic modes
one can adjust any truncated version of A”A into precise
correspondence with the known right side of Eq. (267),
without even confronting the necessity of solving simul-
taneous algcebraic equations. If the six dead-load coefhi-
cients of the first synthetic mode are chosen so as to
provide exactly the correct first column for A7 3, then the

“first of the six dead-load cocefficients of the second mode

must be zero, and the remaining five can be chosen to
match the second columns of A3 und A"A. This pro-
cedure continues, each time with one or more zero dead-
load cocfficients, until six synthetic modes have been added
and independent elements of 37X and A”a match per-
fectly. Alternatively, one may mechanically record the £1
independent equations available from Eqs. (267) and
(288), and solve simultancously for 21 unknown dead-
load coefficients. This would require only 4 synthetic
modes (24 dead-load coefficients, with 3 arbitrarily
assigned).

The final equations of motion for vehicle simulation
then become

JU = —37(3) 5 5 A (269)

and
i+ 22 F + () g =
IU 40~ FTM (Sup — Fp) O
(270)

where the barred matrices represent truncations that may
include synthetic modes. It may be computationally ad-
vantageous to use Eq. (269) to rewrite Eq. (270) in the
form .
a0+ e+ [(8) + AJAT (5¢)) 7 =
A" A4 ¢TA— "M Xy ~ FXp,) 0
(271)

I the appendage response is of primary interest, Eq. (271)
will suffice, but for space vehicle simulation, both
Eqgs. (269) and (271) are required.

The most significant feature of these equations is the
simplicity of the coefficient matrices of the sccond de-
rivative terms. By multiplying Eq. (269) by the inverse
of the constant and usually diagonal matrix J, one can
obtain Eqs. (269) and (2711 in the comhined matrix form
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The ahsence of a coefficient matrix for the highest-
ordercd derivative simplifies the numerical integration of
Eq. (272) very substantially when compared to corres-
ponding equations of motion obtained by the methods of
Section 11I-C. The assumption C == E was introduced in
the course of the derivation, and the final system of equa-
tions is not directly applicable to vehicles that undergo
large changes of configuration. Had this feature (variable
C) of the present equations been retained, the vehicle
equations, such as Eq. (224), would have adopted a form
that would be very inefficient for numerical integration.
The matrix I* in Eq. (224) is the total vehicle inertia
matrix, which would become a function of time, and the
variable direction cosine matrix C would remain in the
cocflicient matrix of #. As a result, it would become
necessary to invert or apply Gaussian climination to a
time-varying coefficient matrix of the highest-ordered
derivative at cach step of the numerical integration (or
at greater intervals as judgment allowed). It may there-
fore be concluded that the method of this subsection (and
of Ref. 28) is apt to be preferable in application to ve-
hicles of configuration varying substantially with time.

F. Summary

The discussion of hybrid-coordinate methods includes
a very substantial body of material, much of which is not
available clsewhere. In this respect, Section 1 differs
from Sections 1I and 1V, which are intended to provide
abbreviated reviews of the well-established methods that
employ either discrete coordinates or vehicle normal-mode
coordinates exclusively.

To suminarize, two quite diffcient methods are devel-
oped: Section HI-E covers -the synthetic-mode method,
which employs cquations of motion written scparately
for the rigid and clastic components of the vehicle; and
the preceding sections explore the various ways in which
the equations of motion of the total vehicle may he com-
bined with appendage equations in the simulaiion. Except
in unusual circumstances, the synthetic-mode method
should be applied only to vehicles with time-varying con-

figuration, because this method generally requires more .
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appendage modal.coordinates than are necessary with the
alternative approach.

Sections I11-B and 1I-C contain derivations of equa-
tions of motion of flexible appendages and total vehicles,
respectively. These derivations follow from the most basic
principles of classical mechanics, but they are complex in
detail. Vcehicles of variable gross configuration are ex-
cluded in the course of the derivations of Section I111-C,
so that the most general final results of that section are
applicable to the unrestricted motion of a vehicle con-
sisting of a rigid body B, to which there arc attached a
rigid symmetric rotor, a linear oscillator, and a Hexible
appendage limited to small deformations. The appro-
priate equations are Eqs. (129), (131), (134). und (136),
which may be considered in combination with L. (95)
for the appendage deformations. Equation (84) provides
the appendage equations of motion in a more general
ease in which the appendage is undergoing large rota-
tions relative to its base,

The derivaticn of cquations of motion for flexible ve-
hicles in terms of discicte coordinates is principally -a
bookkeeping task. The equations of Scction IH-B and
11I-C become useful only after the coordinate transforma-
tions of Section 1I1-D are imposed. Four distinet coordi-
nate transformations are developed as shown in Egs. (159),
(187), (211), and (232), The first two are transformations
to be applied to first-order equations, which mmst bhe
used if modal coordinates (in the broadest sense) are to
be used for an appendage that is either on a rotating
base or subject to discrete damping. The various ways
in which first-order transformations can be used, with
discussion of limitations and advantages, may be found
following Eq. (201). Sccond-order transformations (as in
Eqs. 211 and 232) are evaluated in the fast part of Sec-
tion 111-D.

Under certain conditions of engincering interest, it may
be appropriate to apply the second-order equation modal
transformations described here even to 1otating append-
ages, although in general such application is restricted
to nonrotating flexible bodics.
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Motivated by the problem of dynamic analysis of heli-
copter blades, Bisplinghoff, Ashley, and Halfiman provide
in their well-known text (Ref. 13) a derivation of the
equations of motion of a rotating beam (pp. 95-98) and
the corresponding modal analysis (pp. 184-187). Their
cquations of motion (Eqs. 3-121 and 3-127 of Ref. 13)
apply to a continnous beam rather than to the discretized
structural model adopted in this report, but they differ
from the equations of motion of a rotating appendage as
derived in this report (Egs. 143 and 140) in a more funda-
mental way also, The term G'q in Egs. (143) and (140)
doces not have a counterpart in the equations of Ref. 13,
The mathematical significance of this difference is re-
flected in the comparison of the modal analyses of Ref. 13
and this report, In Ref, 13 it remains possible to employ
in modal analysis the class of second-order point trans-
formations, which in this report are restricted to nonrotat-
ing systems (typified by Eqgs. 211 and 232). According to
Scction -1, one must employ first-order equation trans-
formations (Egs. 159 and 187) to inhomogencous equa-
tions for rotating appendages, and may employ only
y contact transformations (£q. 186) to sccond-order homo-
gencous cquations of rotating appendages. These dif-
ferences can be reconciled by physical interpretation of
, the significance of the term C’q in Eqgs. (143) and (140).

For an undamped system, velocity-proportional terms
must arise in application to a spinning structure due to
Coriolis “forces”™ or Coriolis accelerations, the latter given
by 2w X v, with w the angular velocity of the reference
frame with respect to which v is the relative velocity.
Because G’q comes from this vector cross-product, the
matrix G’ must be skew-symmetric, If, however, the

. structure is very stiff in directions pointing radially from
i the spin axis, so that v has no component in this direction,
: then the Coriolis forces are limited for small deformations
» to the radial direction. Since the structure is stiff in this
‘ direction, these forces may be of negligible influence on
the deformation. It is quite a separate matter to ignore
the influence of these forces on the reaction at the base
of the structure, but this too is often a reasonable
assumption,

S TR

In application to helicopter blades, it may be appro-
paate that Coriolis accelerations be ignored. as implied
m Ref. 13, Etkin and Hughes (Ref. 38) have successfully
applied the methods of Ref. 13 to a class of spin-
stabilized satellites with radially directed tubular metal
antennas, as typificd by Alowette 1 and Explorer XX.
Although reasonable caution must be exercised in appli-
cation to very fong, slender structures (since the Coriolis
force applics a column load), the simplification of the
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coordinate transformation afforded by ignoring Coriolis
forces should be recognized and this step should he con-
sidered carcfully in any engineering analysis.

IV. Vehicle Normal-Mode Coordinate Methods

A. Application to Nongyroscopic Linear Systems With
Structural Damping

In the introductory remarks of Section I11-C, it is noted
that the primary test of the utility of a given coordinate
transformation is the degree to which it permits the
truncation of the coordinate matrix. Thus the desirability
of a given coordinate transformation should be measured
in terms of the degree to which it uncouples the system
of differential equations employed in the vehicle sinu-
lation. Yet in all of Section 111, transformations are ap-
plied to the appendage deformation coordinates ¢ only,
This represents a compromise with the objective of un-
coupling the equations, since in many applications co- .
ordinate transformations can be applicd as well to the
variables representing the attitude. and position of the
appendage base, so that even more complete uncoupling
of cquations results.

In this section, attention is directed to the determina-
tion of the range of applicability of point transformations
of sccond-order equations in obtaining uncoupled or nor-
mal modal coordinates for the entire vehicle. Examples
of transfurmations in this class are the appendage trans-
formations of Eqs. (211) and (232).

In the discussion of Eq. (217). it is noted that any
equation of the class

M{i{+Dqg+Kg=1 (273)
where M’ and K’ are symmetric and
- D'=aM + pK’ (274)- -

with « and g arbitrary scalars, permits the normal-mode
transformation of Eq. (211). namely,

4 = ¢ (2753)
where ¢ is a sqnare matrix whore columns are the cigen-
vectors associated with Eq. (373). With this transformation
and a premultiplication by ¢7, Eq. (273) hecomes

7+ 2oy + o'y = ¢TL' (276)
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where Cand o are diagonal matrices containingg, respec-
tively, the percentages of critical damping and the vatural
frequencies of the modal coordinates in .

This discussion applics as well to a matrix equation
formed by combining the appendage  equation with
the remaining equations of motion of the vehicle, For
example, one might consider Lgs. (207), (130), (131),
(223}, and a form of (131) obtained by linearizing in o = 6.
These cquations constitute a mmp)ctv system of dynamic
equations for a dual-spin vehicle with @ de-spun platform
to which symmetric rotor, damper, and flexible appendage
are attached. With the hybrid-coordinate approach, the
transformation of Eq. (2751 is successfully applied to the
appendage deformations, and the resulting systein of
equations is recorded as qs. (216), (222), (223), and (224).
Now, however, by virtue of the term - fif - JoF
in Kq. (130) and the term d€ in Eq. (134), the indicated
system of cquations of the entire vehicle does not have

M (Sup — Xp0 R = FXp)

the structure of Eq. (273), and transformation (275) is no
longer useful.

Only by removing the rotor and the damper from the
vehicle can the system of equations be made to conform
to Kq. (273). Then the total system of dynamic equations
reduces to

I‘I(l'; - 2,;..!7}" A‘I/”]) (‘i + K(I =

~

=M (p— R — T\‘,..)o — M2 F A
. (277)

and
T =1+ (0, + RxL, 1 ST F)Mi (278)

These equations may be written as the single matrix
equation

" 0 07l T

TP g e i SRR [N R | N [ (279)
N ’ N ‘7“: h : (i 0 K q ___)\" A‘IEI;-.F 1

which has the structure of Eq. (273), Iacking the daming
term D', One could equally well replace F. )i by oX and
add Eq. (131) to the system of equations, extending the
matrix of unknowns to include ©X. Alternatively (and
cquivalently). Eqs. (230), (231). and (278) could be com-
bined as a single matrix equation,

Determination of cigenvalues and  cigenvectors for
Eq. (279) is conceptually straightforward, although com-
putational obstacles may be intrtoduced by the zero eigen-
values, which are a consequence of the positive semi-
definiteness of the cocficient matrix of [#]g]7. Aside
from the question of -computational procedure, which is
treated inany modern structural dynamics test (e.g.,
Ref. 11, there is the question of interpreting the physical
significance of these zero-frequencey modes, These modes
correspond to translation of the mass center and rotation
of the undeformed vehicle. When response in these modes
is combined with respouse in the various deformation
modes, it becotnes somewhat difficult to determine just
what it is that rotates in the amount given by the zero-
frequency rigid-body-rotation mode. Milne treats this
question in Ref, 4, pointing out that one might reason-
ably be interested in any of three reference frames that
participate in the gross motion of the vehicle: (1) an
attached reference frame, (2) a reference frame in which
the mass center and the principal axes of the deforming
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vehicle are fixed, and (3) a “mean motion™ frame with
respect to which the vehicle mass center s fixed and
vehicle relative metions have no angular momentum
about the vehicle mass center. Milne provides a simple
example that illustrates the possible differences in frames
(2) and (3), and demonstrates that the zero-frequency
rigid-body-rotation mode provides the rotation of the
mean notion frame (3), (This fact is recognized also in
Ref. 3, although less explicitly.)

Equation (279) is not quite as general as Eq. (273),
because of the absence of damping. In order that the
vehicle rigid-body modes have zero damping as well as
zero frequency, any damping included must be propor-
tional to stiffness, ic., D’ - BK’ is required. Within this
restriction, which is traditionally acceptable in structural
dynamics, one may transform a version of Eq. (279) with
structural damping into the form of Eq. (276). Coordinate
truncation may then be imposed as argued previously:,

The term nongyroscopic is applicd to the linear systems
of Eqs. (279) and (273) to reflect the absence of the term
G'q (shew-symmetric () induced by rotation of the
vehicle or some vehicle component.

Point transformations to normal-mode coordinates for
a system of second-order equations for an entire space
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vehicle are thus limited in application to nongyroscopic
linear systems with structural damping. Physical apph-
cation is thus limited to an inertially stabilized space
vehicle with nonvotating appendages and no  internal
rotors or diserete dumpers.,

1t should be noted that even now the original objective
of uncoupling the entire system of cquations is not real-
ized. since in general the dynamic equations in Eq. (279)
must he augmented by an equation that specifies any
control turques and forces in T, A and F. The control
equations are almost invariably nonlinear, if only due to
a dead band in the response of thrustors to sensors, or the
response of sensors to motion, The equations may also be
“damped” (positively or negatively). Frequently: the con-
trol equations are of higher order than Eq. (279). 1t is
therefore wmlikely that the control cquations will be
awmenable to inclusion-in-a system of equations of the
structure of Eq. (273), so they must remain as auxiliary
equations that continue to couple the system of equa-
tions even after the transformation to vehicle normal-
mode coordinates.

1t may also be noted that @ven for passive systems the
esternal torques T and A raay depend explicitly on the
variables in ¢ and g. H, for example. gravity torque
expressions are substituted for T and A, these terms
should be shifted to the left side of Eq. (279) and their
presence reflected in the modal analysis (with the result-
ing replacement of the zero-frequency modes by satellite
libration modes). 1f this step is ot taken, the tevms T and
A (buried in L) will introduce modal-coordinate coupling
in Eq. (276).

B. Application to Gyroscopic Linear.Systems With
Discrete Damping

Equations of motion of a dual-spin vehicle with a
de-spun platforta with attached rotor, damper, and flexi-
ble appendage are collected as Eqs. (207), (130), (131).
223, and a lincarized version of (134, These are all
lincar equations. hut they are gyroscopic and involve dis-
crete damping (so Eq. 274 is violated). Thus it is not pos-
sible to apply a point transformation to these second-
order cquations to obtain unconpled modal coordinates.

There remains the possibility of rewriting the entire
systenn of equations as a single linear state equation such
as g (137 e

Q=BQ - L (250}
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As noted in Section 1II-D in the development following
Eq. (145), there is no obstacle to the application of a trans-
formation as in Eq. (159). i.e..

O = Y

to obtain uncoupled equations in the modal coordinates
in Y (sce Eq. 160), The disadvantages of this approach
(stemming principally from complex numbers in @) are
discussed extensively in Section 111-D.

(281)

When the total system of second-order equations s
gyroscopic, but no discrete damping is included, so
that the homogencous equations have the structure of
Eq. (143), it may be preferable to employ the real trans-
formation of Eq. (187

QO=PZ (282).
to the state equation (380). An evaluation of the advan-
tages of this trausfermation over that of Eq. (281) appears
in the text following Eq. (204) in Section 111-D.

The method of Foss (Ref. 36 and Eq. 173) may be
applied to the entire system of vehicle equations in appli-
cation to nongyroscopic but discretely damped systems.

There remains the question of the esistence of nermal-
mode coordinates for an entire system of vehicle coordi-
nates when the base is not. inertially stabilized. When the
base to which the appendage is attached has a substantial
inertial angular velocity o, the relatively simple Eq. (130)
for the vehicle rotation is replaced by its complicated
antecedent, Eq. (129). This equation is nonlincar, so it
will not yield directly to any kind of modal-coordinate
transformation. In many problems of space vehicle con-
trol. however, one has advance knowledge of the desired
behavior @ (8) of . Tt is then possible to introduce the
variational coordinates #,, 4., % ., which define the small
deviation of the vehicle from its nominal attitude, and to
replace o in Eq. (129) by

e (283)
Assuming i to be small and incliding this with ¢ and ¢
in the linearization process, one can obtain from Eq. (129)
a corresponding linear cquation. When @ (1) depends on
time, this cquation will still not yicld to modal-coordinate
transformation, but when @ is constant, modal coordi-
nates for the entire vehicle can be found. With careful
hookkeeping., the resulting linear,  constant-coefficient
sceond-order differential eguation obtained from Eq. (129
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:an be combined with the correspondingly transformed
and lincarized Egs. (131), (136) and (95) for damper,
rotor, and appendage, and written as a state equation as in
Eq. (280). Application of the transformation of Eq. (281)
is then possible. All this would require much labor, and
the end result would be of dubious value in comparison
with the hybrid-coordinate methods of Section I,

C. Component Modal-Combination Methods

The practical implementation of some of the trans-
formations discussed here and in Section III may for
complex vehicles require modal analyses that strain the
capacity of present digital computers. To circumvent
the problem of finding eigenvalues and eigenvectors for
the matrix equations of very high diiuension that may be
required to accomplish the simulation of an entire space
vehicle, Hurty (Refs. 9, 10) has developed a method
whereby separate modal analyses are performed on com-
ponents or subsystems of the vehicle, and then a vehicle
modal analysis is accomplished by combining compo-
nent modes. Computer programs have been written for
this purpose (c.g., Ref. 39), and the component modal-
combination approach has been widely adopted.

It may appear from the discussion in this section that
the use of vehicle modal coordinates is qualitatively
different from the use of hybrid coordinates (Section HI);
the former method involves coordinate truncation for
fully uncoupled dynamic equations, while the latter im-
poses truncation on appendage deformation coordinates
in equations that are coupled by the discrete coordi-
nates of the vehicle. As a practical matter, however., the
use of vehicle modal coordinates often depends wpon
acceptance of the component modal-combination ap-
proach, and this method also involves the truncation of
modal coordinates for components without regard for
coupling of the component equations with those of the
remainder of the vehicle. Thus the hybrid-coordinate
approach and the component-mode method of modal
analysis share the same pragmatic philosophy. In fact,
it may develop in many applications that the hybrid-
coordinate approach is a variant of the component-mode
method in which certain components are assuned to he
rigid and the final modal analysis of the entire vehicle is
not undertaken.

D. Summary

This brief discussion of vehicle modal-coordinate meth-
ods is included for the primary purpose of keeping the
hybrid-coordinate methods of the Sccticn 111 in perspec-
tive. It has been observed that the same kinds of coordi-
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nate transformations that prove useful in application to
appendage deformation coordinates can be applied to the
entire system of vehicle coordinates, B

Section I1V-A contains a description of the dynamic
systems to which the traditional second-order equation
point transformations of structural dynamics may be
applied. It has been noted that these simple modal-
coordinate transformations are inapplicable when the
vehicle contains any spinning parts or discrete devices
that dissipate (or create) mechanical energy. These same
transformations will stil! be applicable to the appendage
coordinates, providing that the appendage base is not
rotating.

In Section 1V-B, modal-coordinate transformations are
identificd that are applicable to any linear dynamic sys-
tem. These are transformations to be applied to first-order
equations, and in some cases complex numbers are intro-
duced by the transformation.

Although it is not the purpose of this report to ex-
plore methods of numerical computation, the compo-
nent modal-combination method is briefly described in
Section IV-C for comparison of its underlving coordinate-
truncation philosophy with that of the hybrid-coordinate
method.

V. Control System Simulation

A. Nonlinear System: Analysis -

Space vehicle attitude-control systems are very rarely
linear in their relationship between control torque and
attitude error. There is almost aiways a dead-band range
within which the error can fall without actuating control
torque devices, and usually nonlinearities are present
even beyond the dead-band range. Often the torquing
devices are gas jets or other mechanisms operating in a
pulsed or “bang-bang” mode, or they may be momentum
storage devives that require periodic “momentum dump-
ing.” The sensors may be of the sampled data type, they
may be inertial sensors that saturate beyond certain error
limits, or they may be optical sensors with a limited linear
range. Thus there are often significant nonlinearities in
the sensors and actuators of a space vehicle attitude-
control system, as well as the nonlinearities introduced
by the logi«: of the control law.

The dynamic cquations of the controlled velicle are
also frequently nonlinear, as the cquations derived in the
preceding sections attest, even when the structure under
control is assumcd to he lincarly_elastic.
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Techniques of nonlinear analysis .have been devised
that permit practical application to scalar second-order
differential equations, or to equations with certain kinds
of nonlincarities, These methods are described extensively
in-Refs. 40 and 41, and they will not be reviewed here.
It is quite possible that, with severely restrictive assump-
tions, equations for a nonlincarly controlled flexible space
vehicle could be obtained for which nonlinear analvsis
may be fruitful.

For example, if for a given vehicle it is reasonable to
assume a single-axis response to a given control torque,
say, 6, 70 and 4. = 6, =0, then a single second-order
equation for 4, may be extracted from the vehicle equa-
tions and subjected to phase-plane studies (Ref. 40, Ch. 7,
and Ref. 41, Ch. 7). Alternatively, such simplified equa-
tions may for certain kinds of aonlincarities be amenable
to quasi-linearization and the application of describing
functions (Ref. 40,-Chap. 9. and Ref. 41, Chap. 2).

Certainly the primary method of nonlinear analysis of
a space vehicle with flexible appendages is direct simula-
tion and integration of equations of motion. The modal
analysis required for the explicit expression of the equa-
tions of motion of Sections I1I and 1V is clearly suited to
digital computer implementation, and ir most cases this
would appear to be true also of the integration process.
With severe truncation of appendage modal coordinates,
however, the equations may be efficiently employed in an
analog simulation,

As indicated by the references cited in Section II,
there is now abundant experience in the digital computer
numerical integration of discrete coordinate- equations
of motion.

Hybrid-coordinate equations of metion have not yet
found  widespread application. but  digital computer
numerical integration programs have been applied to
lincar dynamic systems with nonlinear control at Hughes
Airceraft Company (us described in Ref. 29), and similar
programs arc wnder development at the Jet Propulsion
Laboratory.

Vehicle normal-mode coordinates have been employed
in the simulation of controlled vehicles chiefly in ap-
plication to missiles and launch vehicles. (Approgriate
clastic-body equations may be found in Ref. 42.) Most
applications of modal coordinates to spacceraft have been
restricted to the determination of passive lincar response
of the spaceeraft structure to its dynamic environment
during launch. Both digital and analog computers have
been employed successfully,
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B. Linear System Analysis

The process of control system design often involves a
preliminary phase in which it is assumed that the control
system is to be lincar, despite the designer’s awareness
that he will eventuaily devise a nonlinear control systen.
By assuming lincarity at the outset, the designer gains
access to simple analytical methods that he can employ
quickly and efficiently to develop a preliminary control
system design. Nonlincarities are then introduced into
the system, and a detailed simulation is performed to
confirm the acceptability of the design, or to provide the
basis for its modification. A discussion cf linear system
analysis is included here for its utility in the preliminary
design process.

Although many of the dynamic equations of the pre-
ceding sections have been nonlinear, it is frequently
possible to replace each variable by the sum of a sinall
variational coordinate and an explicit function of time
that establishes the nominal controlled time behavior of
that variable. (This was suggested in Sections I1I and IV,
where o was replaced by ®(t) + 4, with the variational
cordinate 4 presumed small.) In this way a linearized
approximation czai be obtained for any dynamic simula-
tion of a controlled vehicle.

The lincarized variational equations of the dynamic
system can usually be combined with the lincar equations
of a preliminary control system design in a first-order
equation as in

Q= BQ (284)

Here it has been assumed that it is possible to express
the control torques as unknowns in a system of linear
differential equations in the independent .variable time,
with coordinate coupling to the dynamic equations. In
many cases the preliminary control torque will instead
be available as an explicit function of the variational
coordinates, in which case it can simply be substituted
into the dynamic equations. Thus the matrix Q in
Eqg. (284) may or may not include control torques, but it
will certainly include all of the kinematic coordinates
and their time derivatives.

If the matrix B in Eq. (284) depends on time ir an
arbitrary way, nothing can be done with these equations
but to integrate them numerically. In this cvent, the
lincarized equations are not substantially easicr to deal
with than their nonlincar counterparts.

If matrix B has a periodic time dependence, the stability
of the null solution of Eq. (284} (corresponding to 'he
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nominal motion) can bhe determined by application of
Floquet theory. The equations would have this structure,
for example, if for the dual-spin system simulated by the
linear equations (224), (223), (222), and (216), the rotor
were nonrigid or asymmetric. The application of Floquet
theory to a similar problem may be found in Ref. 43,

In the simplest case, the matrix B in Eq. (284) is con-
stant, and the stability of the null solution of this equation
may be determined from the eigenvalues of B. If the
dimension of the matrix B is very small, or if Eq. {284)
can be separated into a number of uncoupled matrix
equations of small dimension, it may be practical to apply
Routl’s stability criteria (sce any basic controls text, or
Ref. 40, p. 9). Such an application is illustrated later in
this section. In most cases of interest, however, the high
dimension of matrix B necessitates the numerical (digital
computer) calculation of eigenvalues.

The presence of any eigenvalue of B with a positive
real part indicates the instability of the null solution of

Eq. (284), and, by a basic theorem of Liapunov (see.

Ref. 34), also the instability of the null solution of the
corresponding nonlinear equation.

If all cigenvalues of B have negative real parts, the null
solution of Eq. (284) is asymptotically stable, as is that of
the corresponding nonlinear equation.

If none of the cigenvalues of B has a positive real part,
and une or more have a zero real part, no determination
of the stability of the null solution of the nonlincar equa-
tion can be obtained from Eq. (284).

In many applications of intercst, not every kinematic
coordinate appearing in Q is relevant to the dynamic
response of the system. For example, the coordinate x,
which describes the relative rotation of the symmetric
rotor of the dual-spin spacecraft i Eqgs. (224) and (223),
does not appear (undifferentiated) in any of the dynamic
cquations of the system. Such a coordinate is termed
cyclic or ignorable, and it must produce two zero eigen-
values for the matrix B. Theoretically. one mmust then
manipulate the differential equations so as to remove
the cyvclic-coordinate derivatives from Eq. (284), or re.
derive the equations with the use of special methods
that suppress these variables (sce Ref. 24, p. 54). In prac-
tice, however, it may be suflicient simply to ignore those
pairs of zero cigenvalues of B that can be identified with
¢yclic coordinates.

A digital computer eigenvalue program developed at
Hughes Aircraft Company (noted in Ref. 29) has been
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used for dual-spin-satellite attitude-stability studies, based
essentially on Eqs. (238), (223), (224), and (222) (with the
last two equations written instead in terms of cantilever-
appendage modal coordinates).

Preliminary design of lincar control systems is tradi-
tionally based on the use of transfer functions, which
establish the response of the Laplace transforms of. the
system variables to correspondingly transformed input
torques. The hybrid-coordinate method is particularly
compatible with this practice, although the method can
be applied also when vehicle normal-mode coordinates
are used.

Although Laplace transforms can be usefully applied
to any system of linear equations, the advantages of this
approach are most obvious when interest is focused on a
small number of response variables. The concern of the
attitude-controls engineer is generally limited to the rota-
tional coordinates 8,, ., 6,, which have been used here to
describe the small deviations of the base or main body of
the spacecraft from its nominal attitude. Special problems
are introduced when sensors or control actuators are
located on flexible ‘appendages, since then the append-
age deformation coordinates enter the equation that
establishes the control law. In any event, of course, the
appendage vibrations must be permitted to influence
9 = [4,,6..6.]", but often the appendage coordinates
themselves are not of interest. With the Laplace trans-
torm approach, it is a simple matter to remove the (trans-
formed) appendage coordinates from the (transformed)
vehicle equations, and in this way to display most clearly
the relationship between transtormed control torque T (s)
and transformed rotation 4 (s).

" To illustrate this method without encumbrance, it will
be applied here to the relatively simple problem of the
inei:i:lly stabilized nongyroscopic space vehicle with a
single lexible appendage. The appropriate dynamic equa-
tions may be obtained by specializing Eqs. (216) and (224)
to exclude rotor and damper, and to eliminate external
resultant force F and external torques A on the append-
ages. The results are

T =16+ (xT, + Rsl, + 3% MG (285)
§+ 2055+ 0 —@T M (Sup — Spn R~ FXp) 0
(246)

Define now the N by 3 matrix

oy

§'=‘ —‘$T L\l (X.‘,; - 2‘.;..“ - ?Xp;n) (287)
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and note from Eq. (142) that Eqgs. (285) and (286) may be
written as

T=1I0—§% (288)

F+2fsi+ag=5860 (289)

(The bar over § appears because the matrix of eigenvec-
tors ¢ has been truncated, but the definition of Eq. (287)
is not so restricted.)

Equations (288) and (289) provide the following rela-
tionships among the Laplace transforms:

1
§+2C101 +U‘i’

D=(sE+2s{5+ )" =

0
When Eq. (292) is written in inverse form,
(s) = [s:I*="s*§" D8] T(s) {294)

the matrix coefficient of T (s) is called the matrix of trans-
fer functions. This matrix can be written in more con-
venient form in the special case in which truncation to a
single modal coordinate has been imposed. In this case D
is a scalar, § is a 1 by 3 matrix (say, §'), and Eq. (294)
becomes

0(S)~;|:I s (s'-'+2zlms+v'i'>] e
(295)

The matrix 87 § (or 88" in this special case) is, from the
definition in Eq. (278), a 3 by 3 matrix with th: units of an
inertia matrix. A physical interpretation of 1bis matrix will
be obtained indirectly in what follows.

It may first be noted that in *ie limiting case of a rigid
appendage, with ¢; approaching infinity, Eqs. (294) and
(293) provide the expected transfer functions for a rigid
vehicle. The transfer-function matrix is then (I*)t/s2. If I*
is diagonal, this is simpiy a collection of three single-axis
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T(s) =s*I*0 (s) — 87 5% 7 (s) (290)

s25(s) + 2 &aq(s) + 88 7(s) = s* 8.4.(s) (291)

where the argument (s) identifies the transformed vari-

able. Solving Eq. (291) for 7(s) and substituting into
£q. (290), we may write

T(s) = [s*I*— s* 87 (s*E + 255 + 51 5] 6 (s)
(292)
The matrix (s°E + 25¢5 + 3°) is diagonal, so its inverse is

simply the diagonal matrix of reciprocal elements. Call
this matrix D, given by

1
(293)

1
st + 2§\ oys + Gi'-

tranzfer functions 1/I:s%, a = 1,2, 3. Since I* is the inertia
matrix of the entire vehicle about the vehicle mass center,
these are the anticipated limiting-case transfer functions.

Consider now the opposite limiting case, for which
the flexible appendages are so flexible that they are essen-
tially detached, exerting no influence on the motion of
the rigid body (i.e., all natural frequencies o; go to zero).
Equations (294) and (295) then provide the limiting-case
transfer functions from the expression

6(s) = %(1* — 8731 T(s) (296)

This limiting case affords a physical interpretation of 87 §
as the difference in inertia matrix I* of the total vehicle
about its mass center and the inertia matrix I’ of the rigid
body to which the appendage is attached, referred to its
own mass center. If §' is the ith row of the matrix §
defined in Eq. (287), and sufficient accuracy is preserved
after truncation, the relationship

N
Ssitsi=r—1 (297)

iz

must apply. In the special case in which the vehicle mass-
center location is the same with or without flexible ap-
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(a) CONTROL SYSTEM BLOCK DIAGRAM nate, permitting the use of Eq. (295) rather than the
REFERENCE CONTROL DYNAMICS complex matrix expression found in Eq. (294). There
TORQUE TORQUE _BLOCK_ then arises the question as to whether the matrix 5§75
1) oD 10 G) »llly o ”;{.',“ ®*  in Eq. (295) should be replaced by its ideal value as in
8- Eq. (297) or calculated from the definition of Eq. (287),
Hi)6() truncating ¢ to a column matrix corresponding to the first
He) 8 mode shape. The use of the physical interpretation in
Eq. (297) is of course simpler, since it does not require
CONTROL BLOCK NP Lo

knowledge of the mode shape, but it is misleading in its
implication that all portions of the appendage participate

() SCHEMATIC OF DYNME"&KESEUE'ON equally in the first modo! vibration. The alternative of
C?gggg'g r RIGID-VEHICLE BLOCK _—l using the deficition ot 6 % ..m Eg. (287) does not give
1 Ll ' | ATTITUDE wholly accurate results either, however, for such severe

| .\‘ TORQUE | )

+ T truncation. In many situations, it is porsible to combine

| Y I experience and Eq. (297) to obtain as meaningful an

F8)8 () ) estimate of the proper valic of 878 = §'" 8! as the

| Fo | approximate transfer function «/ Eq. (295) warrants. Thus

L FLEXIBILITY SLOCK actual eigenvector (mode shape) calculations can often be
T OYNAMKS Gl avoided in very preliminary analysis.

EXPLICIT DYNAMICS-BLOCK TRANSFER FUNCTION N .
@ The linearity of the system permits the use of super-

contRoL[ T T T Tm m— —— —— —— — — position in generating from Eqgs. (294) and (295) a more
;O)RQUEI TC;RG\)UE RIGID-VEHICLE BLOCK atnupe | Convenient transfer-function representation for use with
+ * -
@ | ¢<> e RG) = —'f(l') ! ) +6(3) truncation to N modes, namely,
| ‘ + s &)
[ . i
T ai
- = TP S
) =—=1I"- - T (s
L L | 6(s) 5-[ Y2 Fttimston| 1O
s 4-2;30,:1'3‘ v i=1

(298)

The traditional block diagram interpretation of a con-
trol system can very readily be imposed on flexible

vehicles simulated with hybrid coordinates. Rather than
- l simply substitute the transfer function of Eq. (294) or
Eq. (298) into a single dynamics block G (s), as shown in
I Fig. 12a, one can introduce a rigid-vehicle block R (s)
l with feedback loops to accommodate the appendage flex-
NN _/ l ibility corrections, as in Fig. 12b.
2 z
P AUNTN TN The detailed structure of the rigid-vehicle-bleck trans-
- - fer function R (s) and the flexibility-block transfer function
l_ FLEXTBILITY BLOCK F(s) _] F be obtained b " ith bols §
T T OYNAMICS oK Bl F.(s) lr;llz:)y e obtained by writing (with symbols from
ig.
Fig. 12. Control system block diagrams
8(s)=R(s)T*(s) = R(s) [T (s) + F(s) 6 ()] (299)
pendages, the matrix 87 § is the matrix I that appears in or

the lower right-hand comner of the 6 by 6 matrix ATA as

expanded in Eq. (267). 8(s)[1 = R(s)F(s)] = R(s) T (s) (300)
For preliminary control system design, it is not unrea-  or

sonable to consider the influer.ce of a flexibie appendage

to be adequately represented by a single modal coordi- T(s)=[R'(s)— F(s)10(s) (301)
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The transfer function R (s) may be chosen so as to provide
the rigid-vehicle term in Eq. (294), namely,

R(s) = %(l*)“ (302)

and the flexibility transfer function F (s) then follows from
Eq. (298) as

87 g

(303)

An explicit representation of the breakdown of the
dynamics block G(s) to accommodate flexible append-
ages is shown in Fig. 12c.

Calculations similar to the preceding produce a transfer
function for the total control system in the form
T#(s) =[G (s) + H(9)] 8 (s) (304)

as may be verified by comparison with Eq. (301), making
the necessary change of sign. The inverse of the matrix
in brackets in Eq. (304) is the matrix transfer function of

the system, and G (s) is the inverse of the comparable
matrix in Eq. (301). Equation (304) implies that the

T (s) = [G- (s) + H (s) {E + &z (s°E + 255 + 32 23}] 6 (s)

when the attitude sensor is attached to a flexible append-
age on the ith sub-body.

As noted previously, the transfer-function concept is
most useful in preliminary analysis, when simplifying
assumptions arc most tolerable. As an extreme example,
transfer functions are recorded for a vehicle with a single-
mode representation of its flexible appendage (e.g., the
first mode), with the further assumption that dynamic
response in this mode influences vehicle response about
one axis only. The inertia matrix I* is taken to be diagonal.
Thus for the single axis denoted by a, the rigid-vehicle
transfer function is the scalar (from Eq. 30)

R(s) =1 (Ig)

and the %exibility transfer function F(s) is the scalar
(from Eq. 303)

(83)
(s* + 28, 0,8+ 0})

F(s)=

(306)
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value of ¢ is sensed directly by sensors mounted on the
rigid base.

If a sensor is mounted on a flexible appendage, it senses
the sum of # and any rotations due to structural deforma-
tion. Assume that the sensor is attached to the ith sub-
body of the appendage, as portrayed in Fig. 4. Then g is
the 3 by 1 matrix of rotational deformations of the struc-
ture at the sensor location (see Eq. 72), so that g is the
(2i)th submatrix of dimension 3 by 1 in the deformation
matrix g (see Eq. 83). Recall that g is related to n by the
transformation ¢ = ¢7, from Eq. (211). Thus g’ may be
obtained as the product with 7 of that 3 by N portion of ¢
obtained as the (2i)th set of 3 by N row partitions of &.
Denote this 3 by N matrix as ¢.;, so that ' may be writ-
ten as -

B =¢uif
Thus the sensor reads 8 + ¢.;% instead of 6. The con-
trol system transfer function H (s) would for a flexibly

mounted sensor operate on 6 (s) + &.; 7(s), rather than
on 6 (s) alone. But Eq. (291) provides

7(s) = (s*E + 255 + %) 28 4 (s)
so that the control system transfer function H (s) actu-

ally operates on [E + ¢.; (S°E + 25 £ & + 52)15? 8] 6 (s).
Equation (304) is thus modified to the form

(305)

The dynamics transfer function G (s) is then, from
Eq. (301), the scalar

Y OV ol A
G = [105“ (& +2as + af)]

(82 -
_ 1 [1 =
T (Bs) 8+ 200,58+ of

. (83)° 17
1 [8‘[1 - _1;_] +2{1cls+a,]

=T 2+ 28, 0,5 + ol
(307)
or
G.(s)= 8242808+ af
{(I‘qs'-’) }s [1 - (—81')—] + 20,8 + a,}]
(308)
7




The quantity

-

-

which is 1 for a vanishingly small appendage and zero
for an appendage on a vanishingly small base, is given
the label

R 8L (309)

o

and may be called the normalized reduced.inertia for
axis « and mode 1. On the assumption that the sensors
are attached directly to the base, the total control system
tranisfer functicn is available from Eq. (304) as the scalar

fas) _ Gs)
Te(s} 1+ G(sH(s)

(310)

From this expression, the customary procedures of con-
trol system synthesis can be applied. For example, sta-
hility can be determined (in the linear approximation)
from the roots of the characteristic equation in s, —...

1+ G(s)H(s)=0 (311)
This is illustrated here for a simple gain control, so that
H (s) is the constant K. and Eq. (311) becomes (noting
Egs. 308 and 309)

K(s* + 2¢, 0,8 + o3)

Necessary and sufficient criteria for asymptotic stability
follow:.....

3 Lot~ K1~ -2)>0
(4) 2K¢, 0, [I70t + K(1 — %) — 1 o%] =

2K 0 (1 - R) >0
(5) Koi >0

Assuming that gain K is positive. one may infer asymptotic
stability in every case, since 0 < -# < 1 and all other sym-
bols appearing in these criteria are positive.

Of course it should not be assumed that the appendage
can never destroy control system stability; this supposi-
tion is demonstrated here only in a very special case.

It may be useful for the control system designer to con-
struct reot locus plots corresponding to simple models
such as that reflected in Eq. (312), which is based on
single-axis response of an appendage represented by a
single modal coordinate. The root locus plot is simply the
plot of the locus of the roots of Eq. ‘312) as K varies from
zero to infinity. When K = 0. these roots (called the
poles) are

MW e &+ st o] O
s$;=p, =0
or, if -Rs* + 20,5 + 07 £ 0, this hecomes s.z=p. =0
SILAR) + 5 @ Lo) + 8 (et + K) P 1 1L, [(1.2‘;‘.".’3" PN ML)
+ s(2K¢ o) + Kei =0 (312) .
gy . 14
={=—) [—& =i(-k—&5)n
Stability is readily asscssed for this system by the usc of () o %
the Routhian array: (313)
sh IR Isi + K Kei and when K = ., these roots (called the zeros: are
st 215 ¢, oy 2K, oy 0 S12= 2y = o [~ & =il = )] (314)
M I'ei + K— KK Ko 0
For most problems of practic.} interest. the percentage
' oRs 2I%¢. 0K of critical damping is only a few percent. so ' — i s
§': 2Kvoy — (I"ei * K~ RK) 0 0 positive. Even when this condition is violated. however,
the poles in Eq. (313! remain in the left half-plane. as the
8 - Ko} 0 0 Routh analvsis guaranteed.

2
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Figure 13 is not a root locus for K ranging between zero 2.5
and infinity, but is instead a plot of the loci of the poles

and zeros as R and ¢, vary. This figure is in the planc of b
solutions for s = « - iB. 1t shows the locus of the two
complex conjugate zeros as ¢, varies from zero (when
Fie = *ie) to 1 (when 2, ~ -1, —1), and finally to
infinity (when z, . = 0, - o). These loci are represented
as long-dash lines in Fig, 13. The short-dash lines show
the pole loci with ¢, variation. The two poles at zero are
unchanged, but the poles p., p, change from purely imag- 2.0 -
inary roots when ¢, =20 to double real (and negative)
roots when £ = R, The poles then split, and approach
zero and negative infinity as ¢, increases. The zeros are
uninfluenced by variations in -8, as are the two poles at
zero, The two remaining poles coincide with and cancel
the zeros when <R = 1, since there is then no flexible
appendage on the vehicle. As <R goes from 1 toward zeio,

the poles move along the solid-line loci in Fig. 13. When é i
these loci reach the real axis (as shown for ¢, = 0.50 and g
¢, = 0.707), the poles split and approach zero and nega- z
tive infinity. z i

The more customary root locus plot shows the path of 2
the roots from the poles (where K == 0) to a final position 5 i
cither at infinity or coincident with the zeros (where 3
K ). Such a plot requires repeated solution of the  $ )
fourth-degree equation in Eq. (312), and is a suitable task £
for a computer. A few such plots have been generated for - -0 o,
simple control system transfer functions H(s), and no = & '\..
instabilities were found, although no systematic study has
been undertaken. Figure 14 illustrates a typical result for

the simple gain-centrol system previously discussed, with
H (s) = K. For such a system, it is a simple matter to es-
tablish the existence of vertical asymptotes, and to deter- :
mine their intersection with the real axis. With a little . -
additional labor, one can find general expressions for the
lines of approach to the zeros and departure from the
poles. Such caleulations indicate that Fig. 14 is typical for
practical values of -® and £, It is interesting to note that
even as A approaches unity and the appendage poles and
zeros approach coalescence. the loci that converge upon
the zeros continue to be those rigid-body poles at the
origin, as shown in Fig. 14, for values of - # as high as 0.97. 2

x
The exploration of the influence of fiexible appendages 0 \
on control system transfer functions appears to be per- -0 =0.5 °
: ) . " o/, THE NORMALIZED REAL PART OF 5
haps the easiest and most immediately rewarding path to
understanding of system behavior, but this exploration Fig. 14. Root locus plot (variahle gain K)
has only begun.

0.5

K=0.75
£=0.20
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